期刊文献+

基于Apriori与User-CF的银行客户挖掘及个性化推荐 被引量:1

Bank Customer Mining and Personalized Recommendation Based on Apriori and User⁃CF
下载PDF
导出
摘要 大数据技术的发展向银行的数据挖掘能力提出新要求,因此加强银行智能化服务,提升银行的金融服务能力对提升银行的客户满意度具有现实意义。采用Apriori关联规则算法,分析办理业务的各类型客户间的关联规则,有利于挖掘能够发展转化为个贷客户的潜在新用户;为此,本研究分别构建余弦相似度与Pearson相似度的协同过滤算法,预测客户对未知类型产品的偏好程度,根据相关评分将相应产品推荐给客户。结果表明,通过Apriori关联规则算法与协同过滤算法,能够有效提高数据的分析管理能力,助力银行挖掘新客户,深度培育基础客户,为客户提供更加个性化、人性化的服务系统,加强银行智能化服务,从而提升银行的金融服务能力。 The development of big data technology puts forward new requirements for banks’data mining capabilities.Strengthening banks’intelligent services and improving banks’financial service capabilities are of practical significance for improving banks’customer satisfaction.The study uses Apriori association rule algorithm to analyze the association rules among various types of customers,which is conducive to mining potential new applications that can be developed into individual loan customers.Therefore,the study constructs the collaborative filtering algorithms of cosine similarity and Pearson similarity respectively to predict the degree of customer preference for unknown types of products,and recommends corresponding products to users according to the relevant scores.The results show that the Apriori association rule algorithm and collaborative filtering algorithm can effectively improve the data analysis and management ability,help banks to dig new customers,deeply cultivate basic customers,provide customers with a more personalized and humanized recommendation system,and strengthen the bank’s intelligent service,so as to improve the bank’s financial service ability.
作者 黄思洁 董晓龙 连海峰 Huang Sijie;Dong Xiaolong;Lian Haifeng(Department of Computer and Information,Fujian Agriculture and Forestry University,Fuzhou 350002,China)
出处 《黑龙江科学》 2023年第17期7-12,16,共7页 Heilongjiang Science
基金 福建农林大学乡村振兴研究院农信专项开放基金项目“基于知识图谱和人工智能的客户金融服务提升的研究与实践”(SKXJ2214A)。
关键词 APRIORI算法 协同过滤 银行客户挖掘 智能营销 个性化推荐 Apriori algorithm Collaborative filtering Data mining of bank customers Intelligent marketing Personalized recommendation
  • 相关文献

参考文献11

二级参考文献95

共引文献258

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部