期刊文献+

谷氨酸棒状杆菌高丝氨酸脱氢酶单突变体酶学性质表征

Characterization of Enzymatic Properties of Single Mutants of Homoserine Dehydrogenase from Corynebacterium glutamicum
下载PDF
导出
摘要 通过定点突变技术,提高高丝氨酸脱氢酶(homoserine dehydrogenase,HSD)的催化活性,减少通路中代谢产物对其产生的反馈抑制和阻遏作用。对HSD与底物高丝氨酸分子进行对接,通过其空间结构分析,选择Asp61和Gly25两个关键位点进行定点饱和突变,通过酶活力筛选,发现突变体A61L和G25G较野生型(wildtype,WT)酶活力显著提高。对这两个突变体进行酶动力学和酶学性质研究,结果显示:相较于WT,A61L和G25G的Km值降低,底物亲和力增强,酶活力分别提高到1.21、1.35倍;n值减小,正协同性增加;A61L和G25G最适温度与WT相同均为40℃;A61L最适pH值与WT相同为8.0,G25G最适pH值为8.5较WT提高;A61L和G25G酶活力半衰期较WT分别延长1h和减少0.5h;低浓度K^(+)、Mg^(2+)、Ca^(2+)对突变体和WT有激活作用;不同体积分数甲醇、乙醇、乙腈和二甲基亚砜对突变体和WT有明显抑制作用;在1~25mmol/L抑制剂浓度下,突变体受抑制作用较WT明显减弱。本研究获得酶活力提高、别构抑制减弱的突变体G25G和A61L,为优化HSD合成代谢途径和构建高产蛋氨酸、苏氨酸和异亮氨酸菌株提供了参考。 Site-directed mutagenesis was used to improve the catalytic activity of homoserine dehydrogenase(HSD)to reduce its feedback inhibition and repression by metabolites in the pathway.HSD was docked with the substrate homoserine,and its spatial structure was analyzed.Two key sites,Gly25 and Asp61,were selected for site-directed saturation mutation.The activity screening showed that the mutants A61L and G25G had significantly increased enzyme activity when compared to the wild type(WT).The kinetics and enzymatic properties of these two mutants were studied.It was found that compared to the WT enzyme,the Km values of G25G and A61L decreased,the substrate affinity increased,and the enzyme activity increased by 1.21 and 1.35 times,respectively;the n value decreased,and the positive synergy increased.The optimum temperature for A61L and G25G was 40℃,the same as that for WT;the optimum pH for A61L and WT was 8.0,which was lower than that(8.5)for G25G.The half-lives of A61L and G25G were 1 h longer and 0.5 h shorter than that of WT,respectively.Low concentrations of K^(+),Mg^(2+),and Ca^(2+)could activate the mutants and WT,while different concentrations of methanol,ethanol,acetonitrile and dimethyl sulfoxide had significantly inhibitory effects on the mutants and WT.At inhibitor concentrations of 1-25 mmol/L,the inhibitory effect was significantly weaker on the mutants than on WT.The mutants G25G and A61L showed improved enzyme activity and weakened allosteric inhibition.This study provides a reference for optimizing the biosynthetic pathway of HSD and constructing strains capable of producing high yield of methionine,threonine and isoleucine.
作者 江泽沅 柳羽哲 高欣 曾琦 闵伟红 JIANG Zeyuan;LIU Yuzhe;GAO Xin;ZENG Qi;MIN Weihong(National Engineering Laboratory for Wheat and Corn Further Processing,College of Food Science and Engineering,Jilin Agricultural University,Changchun 130118,China)
出处 《食品科学》 EI CAS CSCD 北大核心 2023年第18期110-116,共7页 Food Science
基金 “十四五”国家重点研发计划重点专项(2021YFD2101000,2021YFD2101002) 国家自然科学基金面上项目(31771967)。
关键词 谷氨酸棒状杆菌 高丝氨酸脱氢酶 酶学性质 定点突变 酶动力学 Corynebacterium glutamicum homoserine dehydrogenase enzymatic properties
  • 相关文献

参考文献13

  • 1李莹..基于代谢工程选育谷氨酸棒杆菌L-蛋氨酸高产菌[D].哈尔滨工业大学,2016:
  • 2秦天宇..代谢工程改造谷氨酸棒杆菌生产L-甲硫氨酸[D].江南大学,2014:
  • 3申术霞,朱运明,闵伟红,方丽,许金坤.北京棒杆菌AS1.299高丝氨酸脱氢酶突变体L200F/D215K的异源表达及酶学性质[J].微生物学报,2014,54(10):1178-1184. 被引量:3
  • 4樊占青..北京棒杆菌(Corynebacterium pekinense)天冬氨酸激酶催化位点空间改造及别构调控机制研究[D].吉林农业大学,2021:
  • 5任军..天冬氨酸激酶定点突变及酶学性质表征[D].吉林农业大学,2013:
  • 6王亚南..北京棒杆菌(Corynebacterium pekinense)天冬氨酸激酶催化活性位点的空间改造及工程菌构建[D].吉林农业大学,2021:
  • 7王哲人..北京棒杆菌(Corynebacterium pekinense)天冬氨酸激酶抑制剂Thr结合位点空间改造及催化机理研究[D].吉林农业大学,2021:
  • 8樊占青,刘晓婷,魏贞,王哲人,王亚南,高欣,闵伟红.新型天冬氨酸激酶突变株构建及酶学性质表征[J].食品科学,2022,43(2):62-69. 被引量:1
  • 9申术霞..北京棒杆菌高丝氨酸脱氢酶突变体的异源表达及酶学性质表征[D].吉林农业大学,2014:
  • 10许金坤..北京棒杆菌AS1.299高丝氨酸脱氢酶定点突变及酶学性质表征[D].吉林农业大学,2013:

二级参考文献27

  • 1杨浩萌,姚斌,范云六.木聚糖酶分子结构与重要酶学性质关系的研究进展[J].生物工程学报,2005,21(1):6-11. 被引量:28
  • 2陈惠,赵海霞,王红宁,杨婉身,吴琦,倪燕.植酸酶基因中稀有密码子的改造提高其在毕赤酵母中的表达量[J].中国生物化学与分子生物学报,2005,21(2):171-175. 被引量:22
  • 3杨浩萌,柏映国,李江,罗会颖,王亚茹,伍宁丰,范云六,姚斌.木聚糖酶XYNB的N46D突变、表达及酶学性质变化[J].中国生物化学与分子生物学报,2006,22(3):204-211. 被引量:12
  • 4Viola RE. The central enzymes of the aspartate family of amino acid biosynthesis. Accounts of Chemical Research, 2001, 34(5): 339-349. 被引量:1
  • 5Azevedo R, Lancien M, Lea P. The aspartic acid metabolic pathway, an exciting and essential pathway in plants. Amino Acids, 2006, 30(2): 143-162. 被引量:1
  • 6Thomas D, Barbey R, Surdin-Kerjan Y. Evolutionary relationships between yeast and bacterial homoserine dehydrogenases. FEBS Letters, 1993, 323 (3) : 289-293. 被引量:1
  • 7Cami B, Clepet C, Patte J. Evolutionary comparisons of three enzymes of the threonine biosynthetic pathway among several microbial species. Biochimie, 1993, 75 (6) : 487- 495. 被引量:1
  • 8Jacques SL, Ejim LJ, Wright GD. Homoserine dehydrogenase from Saccharomyces cerevisiae: kinetic mechanism and stereochemistry of hydride transfer. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology, 2001, 1544( 1 ) : 42-54. 被引量:1
  • 9Parsot C, Cohen GN. Cloning and nucleotide sequence of the Bacillus subtilis hom gene coding for homoserine dehydrogenase. Structural and evolutionary relationships with Escherichia coli aspartokinases-homoserine dehydrogenases I and II. Journal of Biological Chemistry, 1988, 263(29) : 14654-14660. 被引量:1
  • 10Delabarre B, Thompson PR, Wright GD, Berghuis AM. Crystal structures of homoserine dehydrogenase suggest a novel catalytic mechanism for oxidoreductases. Nature Structural and Molecular Biology, 2000, 7 (3) : 238-244. 被引量:1

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部