期刊文献+

基于机器学习的大气PM_(2.5)中金属浓度预测模型的研究 被引量:3

Prediction Models of Metal Components in Ambient PM_(2.5)Based on Machine Learning
下载PDF
导出
摘要 基于2013—2018年哈尔滨市气象数据、大气污染物数据和细颗粒物(PM_(2.5))中金属成分数据,采用机器学习方法探索大气PM_(2.5)中金属浓度预测模型,并选择最优模型进行污染物浓度预测。结果表明,多元线性回归(MLR)、人工神经网络(BP ANN)、支持向量机(SVM)和随机森林(RF)4种模型中,RF对大气PM_(2.5)中5种金属[锑(Sb)、砷(As)、铅(Pb)、镉(Cd)、铊(Tl)]的浓度预测效果最佳,在训练集和测试集中表现均较稳定,其中相关系数(r)均>0.7,平均绝对误差(MAE)和均方根误差(RMSE)数值较小。RF在大气PM_(2.5)中金属浓度预测上具有较好的表现,可在缺乏监测和实验数据的情况下,实现对大气颗粒物中金属浓度的快速预测,为全面了解颗粒物中金属污染特征提供数据基础。 Based on the meteorological data,air pollutant data and metal components in PM_(2.5)in Harbin from^(2)013 to 2018,the machine learning method was used to explore the metal concentration prediction model in ambient PM_(2.5),and the optimal model was selected for prediction.After comparing four models of multiple linear regression(MLR),back propagation artificial neural network(BP-ANN),support vector machine(SVM)and random forest(RF),the results showed that the prediction effect of RF on the five metals concentration[antimony(Sb),arsenic(As),lead(Pb),cadmium(Cd),thallium(Tl)]in PM_(2.5)was the best,and the predicted performance in the training set and test set was relatively stable,and the correlation coefficient(R)values were all greater than 0.7,and the mean absolute error(MAE)and root mean square error(RMSE)value were smaller.RF had a good performance in predicting the concentration of metal components in PM_(2.5).Our results provide an effective approach for the prediction of airborne metal concentrations in the absence of monitoring and experimental data,and provide data basis for a more comprehensive understanding on metallic pollutants in particulate matters.
作者 伍亚 邹凤娟 高丽洁 刘晓波 马文军 梁晓峰 朱穗 WU Ya;ZOU Fengjuan;GAO Lijie;LIU Xiaobo;MA Wenjun;LIANG Xiaofeng;ZHU Sui(School of Basic Medical Sciences and Public health,Jinan University,Guangzhou,Guangdong 510632,China;Harbin Center for Disease Control and Prevention,Harbin,Heilongjiang 150030,China;Disease Control and Prevention Institute,Jinan University,Guangzhou,Guangdong 510632,China)
出处 《环境监控与预警》 2023年第5期8-16,共9页 Environmental Monitoring and Forewarning
基金 广东省基础与应用基础研究基金项目(2021A1515012578)。
关键词 细颗粒物 金属 机器学习 预测模型 PM_(2.5) Metal Machine learning Prediction model
  • 相关文献

参考文献2

二级参考文献21

  • 1HJ168-2010,环境监测分析方法标准制修订技术导则[S]. 被引量:79
  • 2中国地质调查局.DD2005-03生态地球化学评价样品分析技术要求(试行). 被引量:3
  • 3GB3095-2012,环境空气质量标准[s]. 被引量:164
  • 4HJ657-2013,空气和废气颗粒物中铅等金属元素的测定电感耦合等离子体质谱法[s]. 被引量:9
  • 5马丹,王宗芳,孙福生.微波萃取土壤中重金属形态的分析研究[J].苏州科技学院学报(工程技术版),2007,20(4):37-43. 被引量:5
  • 6空气和废气监测分析方法指南编委会编.空气和废气监测分析方法(增补版)[M].4版.北京:中国环境科学出版社,2007. 被引量:1
  • 7TESSIER A, CAMPBELL P G C, BISSON M. Se- quential extraction procedure for the speciation of par- ticulate trace metals[J]. Analytical Chemistry, 1979, 51 . 844-851. 被引量:1
  • 8RAURET G, RUBIO R, LOPEZ-SANCHEZ J F. Op timization of Tessier procedure for metal solid specia- tion in river sediments[J]. Trends in Analytical Chem- istry, 1989,36 : 69-83. 被引量:1
  • 9RAURET G, LOPEZ-SANCHEZ J F, SAHUQUIL- LO A, et al. Improvement of the BCR three-step se- quential extraction procedure prior to the certification of new sediment and soil reference materials[J]. Jour- nal of Environmental Monitoring, 1999,1 : 57-61. 被引量:1
  • 10DAVIDSON C M, DELEVOYE G. Effect of ultra- sonic agitation on the release of copper, iron, manga- nese and zinc from soil and sediment using the BCR three-stage sequential extraction [J]. J Environ Monit, 2001,3 (4) . 398-403. 被引量:1

共引文献5

同被引文献19

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部