期刊文献+

基于深度学习的金属表面腐蚀等级检测研究 被引量:1

METAL SURFACE CORROSION LEVEL DETECTION BASED ON DEEP LEARNING
下载PDF
导出
摘要 为了实现复杂条件下配电箱金属表面腐蚀等级的快速、较准确检测,结合深度学习对金属腐蚀检测进行深入研究。现场采集了湖北电力公司中配电箱金属表面腐蚀图片,且对配电箱所属区域环境进行了较详细的分析,获得了较好的金属腐蚀等级标签。在使用连续多层小型卷积滤波器的基础上,添加SENet特征提取模块,提出MS1Net卷积神经网络模型,并使用交叉熵损失函数对MS1Net进行优化。为了验证MS1Net有效性,针对同一网络不同损失函数之间进行对比实验,结果验证交叉熵损失函数收敛更快,loss最低值达到0.077 0。针对多个网络结构如ZFNet、VGG16和MS1Net进行对比实验,最终表明MS1Net能够更快速、更准确地对金属表面腐蚀等级进行检测,且检测准确率为98.44%。 In order to improve the speed and accuracy of metal corrosion detection of the distribution box's metal surface,we use deep learning to conduct in-depth research on metal corrosion detection.We collected on-site pictures of the metal surface corrosion in Hubei Electric Power Company.Through the detailed analysis of the environment where the distribution box belonged,we marked each picture with a sufficiently accurate metal corrosion grade label.On the basis of using continuous multilayer small convolution filter,we added the SENet feature extraction module,proposed the MS1Net convolutional neural network model,and used the cross-entropy loss function to optimize MS1Net.In order to verify the effectiveness of MS1Net,we compared some different loss functions under the same network structure.The experimental results show that the cross-entropy loss function converges faster and the lowest loss value reaches 0.0770.Furthermore,we compared several network structures such as ZFNet,VGG16 with MS1Net.The results show that the MS1Net can detect the corrosion grade of the metal surface more quickly and accurately,and the detection accuracy is 98.44%.
作者 谭暑秋 石林 张建勋 Tan Shuqiu;Shi Lin;Zhang Jianxun(College of Computer Science and Engineering,Chongqing University of Technology,Chongqing 400054,China)
出处 《计算机应用与软件》 北大核心 2023年第9期229-235,共7页 Computer Applications and Software
基金 重庆市基础研究与前沿探索项目(cstc2018jcyjAX0287)。
关键词 腐蚀等级检测 深度学习 卷积神经网络 SENet Corrosion level detection Deep learning Convolutional neural network SENet
  • 相关文献

参考文献5

二级参考文献58

  • 1胡会利,李宁,程瑾宁.不同金属的电化学噪声研究[J].电镀与精饰,2007,29(2):4-7. 被引量:4
  • 2Wang D H, Bierwagen G P. Sol gel coatings on metals for corrosion protection[J]. Prog Organ Coat, 2009,64(4) .. 327. 被引量:1
  • 3Breslin C B,Rudd A L. Activation of pure A1 in an indium- containing electrolyte--An electrochemical noise and impe- dance study[J]. Corros Sci, 2000,42 : 1023. 被引量:1
  • 4Pistorius P C. Design aspects of electrochemical noise mea- surements for uncoated metals: Electrode size and sampling rate[J]. Corrosion, 1997,53 (4) : 273. 被引量:1
  • 5Garc O E, Gonza S J ,Corvo F, et al. Application of electro- chemical noise to evaluate outdoor atmospheric corrosion of copper after relatively short exposure periods[J]. J Appl Electrochem, 2008,38 : 1363. 被引量:1
  • 6Cottis R. Interpretation of electrochemical noise data [J]. Corrosion, 2001,57 (3) .. 265. 被引量:1
  • 7Tan Y, Bailey S, Kinsella B. The monitoring of the forma- tion and destruction of corrosion inhibitor films using elec- trochemical noise analysis (ENA) [J]. Corros Sci, 1996,38: 1681. 被引量:1
  • 8Mansfeld F, Sun Z, Hsu C, et al. Concerning trend removal in electrochemical noise measurements 2001,43:341. 被引量:1
  • 9Jl- Corros Sci,Bertocci U, Huet F, Nogueira R, et al. Drift removal pro- cedures in the analysis of electrochemical noise [J]. Corro- sion, 2002,58(4) .. 337. 被引量:1
  • 10Huang J, Qiu Y, Guo X. Comparison of polynomial fitting and wavelet transform to remove drift in electrochemical noise analysis [J]. Corros Eng Sci Techn, 2010,45(4) : 288. 被引量:1

共引文献1914

同被引文献16

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部