期刊文献+

基于CAMDNet的视频目标跟踪算法

A VIDEO TARGET TRACKING ALGORITHM USING CAMDNET
下载PDF
导出
摘要 多域卷积神经网络(MDNet)在目标出现背景杂乱、目标遮挡、尺度变化和旋转形变时,存在跟踪精度不高、成功率下降的问题。针对此问题,提出一种融合高效通道注意力机制和可变形卷积的目标跟踪算法(CAMDNet)。通过在MDNet网络中引入高效通道注意力机制有效学习特征通道之间的相关性,进行特征筛选,增强网络特征表达能力,并引入可变形卷积以提高模型对尺度变化的建模能力,增强网络健壮性。在视频目标跟踪基准数据集OTB50和OTB100上进行评估,并与当下较为流行的跟踪算法进行对比。实验结果表明CAMDNet算法优于其他对比算法,并且比同等实验条件下的MDNet跟踪精准率提升2.25%,跟踪成功率提升2.6%,证明CAMDNet算法能有效地提高目标跟踪性能并具有较好的鲁棒性。 Multi-domain convolution neural network(MDNet)has the problems of low tracking accuracy and low success rate when the target appears background clutter,target occlusion,scale change,and rotation deformation.To solve the problems,a target tracking algorithm(CAMDNet)combining efficient channel attention mechanism and deformable ConvNets is proposed.In the MDNet network,an efficient channel attention mechanism was introduced to effectively learn the correlation between feature channels,and feature screening was carried out to enhance the network feature expression ability.Deformable ConvNets was introduced to improve the modeling ability of the model for scale change and enhance the robustness of the network.We evaluated the algorithm on the video target tracking benchmark datasets OTB50 and OTB100,and compared it with the currently popular tracking algorithm.The experimental results show that the CAMDNet algorithm is superior to other comparison algorithms,and the tracking accuracy is improved by 2.25%and the tracking success rate is improved by 2.6%compared with MDNet under the same experimental conditions.It proves that the CAMDNet algorithm can effectively improve the target tracking performance and has better robustness.
作者 贾金露 姚自强 赵玉卿 钱育蓉 Jia Jinlu;Yao Ziqiang;Zhao Yuqing;Qian Yurong(College of Software,Xinjiang University,Urumqi 830046,Xinjiang,China;Key Laboratory of Software Engineering,Xinjiang University,Urumqi 830046,Xinjiang,China;Key Laboratory of Signal Detection and Processing in Xinjiang Uygur Autonomous Region,Urumqi 830046,Xinjiang,China)
出处 《计算机应用与软件》 北大核心 2023年第9期109-116,共8页 Computer Applications and Software
基金 国家自然科学基金项目(U1803261,61966035) 自治区研究生创新项目(XJ2020G074)。
关键词 高效通道注意力机制 视频目标跟踪 可变形卷积 多域卷积神经网络 深度学习 Efficient attention mechanism Video target tracking Deformable convolution Multi-domain convolutional neural network Deep learning
  • 相关文献

参考文献4

二级参考文献92

  • 1侯志强,韩崇昭.视觉跟踪技术综述[J].自动化学报,2006,32(4):603-617. 被引量:254
  • 2Comaniciu D, Ramesh V, Meer P. Real-time tracking of non- rigid objects using mean shift. In: Proceedings of the 2010 IEEE Conference on Computer Vision and Pattern Recog- nition. Hilton Head Island, SC: IEEE, 2000. 142-149. 被引量:1
  • 3Risfic B, Arulampalam S, Gordon N. Beyond the Kalman filter-book review. IEEE Aerospace and EJectronic Systems Magazine, 2004, 19(7): 37-38. 被引量:1
  • 4Viola P, Jones M. Rapid object detection using a boosted cascade of simple features. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pat- tern Recognition. Hawaii, USA: IEEE, 2001.1-511-I-518. 被引量:1
  • 5Perez P, Hue C, Vermaak J, Gangnet M. Color-based prob- abilistic tracking. In: Proceedings of the 7th European Conference on Computer Vision. Copenhagen, Denmark: Springer, 2002. 661-675. 被引量:1
  • 6Possegger H, Mauthner T, Bischof H. In defense of color- based model-free tracking. In: Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA, USA: IEEE, 2015. 2113-2120. 被引量:1
  • 7Danelljan M, Khan F S, Felsberg M, van de Weijer J. Adap- tive color attributes for real-time visual tracking. In: Pro- ceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, OH, USA: IEEE, 2014. 1090-1097. 被引量:1
  • 8Ojala T, Pietikainen M, Harwood D. Performance evalua- tion of texture measures with classification based on Kull- back discrimination of distributions. In: Proceedings of the 12th IAPR International Conference on Pattern Processing. Jerusalem: IEEE, 1994. 582-585. 被引量:1
  • 9Zhou H Y, Yuan Y, Shi C M. Object tracking using SIFT features and mean shift. Computer Vision and Image Un- derstanding, 2009, 113(3): 345-352. 被引量:1
  • 10Miao Q, Wang G J, Shi C B, Lin X G, Ruan Z W. A new framework for on-line object tracking based on SURF. Pat- tern Recognition, 2011, 32(13): 1564-1571. 被引量:1

共引文献88

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部