期刊文献+

面向直驱风力发电系统的控制算法优化设计 被引量:1

Optimization Design of Control Algorithms for Direct Drive Wind Power Generation System
下载PDF
导出
摘要 针对直驱风力发电机组的功率输出不稳定、频率波动超出安全范围问题,该文提出了一种基于深度学习网络预测控制的直驱风力发电系统控制策略。以直驱风力发电系统的频率误差和输出功率为优化目标函数,并将系统的频率变化及风力发电机的转矩限制作为约束条件,利用时间卷积神经网络(TCN)与门控循环单元(GRU)构建预测模型。可行性验证结果表明,在低风速及高风速下有功功率输出的标准差分别为0.04 MW及0.05 MW,轴转矩标准差分别为0.01 MNm与0.05 MNm,推力标准差分别为0.04 MN和0.05 MN,证明了该策略可有效降低直驱风力发电系统输出功率的频率波动。 In response to the problem of unstable power output and frequency fluctuations exceeding the safe range of direct drive wind turbines,this paper proposes a control strategy for direct drive wind power generation systems based on deep learning network predictive control.Taking the frequency error and output power of the direct drive wind power generation system as the optimization objective function,and taking the frequency variation of the system and the torque limit of the wind turbine as the constraint conditions,a prediction model is constructed using time convolutional neural network(TCN)and gate recurrent unit(GRU).The feasibility verification results indicate that the standard deviations of active power output at low and high wind speeds are 0.04 MW and 0.05 MW,respectively,the standard deviations of shaft torque are 0.01 MNm and 0.05 MNm,and the standard deviations of thrust are 0.04 MN and 0.05 MN,respectively.This proves that the strategy can effectively reduce the frequency fluctuations of output power in direct drive wind power generation systems.
作者 万抒策 苏人奇 钱韫辉 WAN Shuce;SU Renqi;QIAN Yunhui(Huaneng Clean Energy Research Institute,Beijing 102209,China;Huaneng(Zhejiang)Energy Development Co.,Ltd.,Clean Energy Branch,Zhejiang 310014,China;Shanghai Qince Electrical and Mechanical Engineering Technology Co.,Ltd.,Shanghai 200434,China)
出处 《自动化与仪表》 2023年第9期46-50,共5页 Automation & Instrumentation
关键词 直驱风力发电系统 风电场 时间卷积神经网络 门控循环单元 优化目标函数 模型预测控制 direct drive wind power generation system wind farm time convolution neural network gated loop unit optimizing objective function model predictive control
  • 相关文献

参考文献10

二级参考文献246

共引文献109

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部