摘要
针对传统目标检测算法未考虑物体角度信息而出现的漏检、错检问题,提出了一种基于YOLOv5s的改进算法。在原始YOLOv5s的基础上,首先结合环形平滑标签技术(CSL)及对损失函数的改进,让网络有了对角度预测的能力;其次增加目标检测层提升了网络对小目标检测的能力,接着融合CBAM注意力机制让网络重点关注对有用信息的学习;最后采用迁移学习的策略初始化网络各层参数。为了验证算法的有效性,自制了标签数据集LDS并做了算法对比试验,实验结果表明,在LDS数据集上,改进后的YOLOv5s算法检测精度达89.94%,相较于原始网络,在检测速度没有下降的基础上检测精度提升了4.80%。
作者
马玥晗
朱明富
MA Yuehan;ZHU Mingfu
出处
《信息技术与信息化》
2023年第8期213-216,共4页
Information Technology and Informatization