期刊文献+

基于空间域和频率域方法的烟雾检测

Smoke detection based on spatial and frequency domain methods
下载PDF
导出
摘要 变电站等工业场景中,基于监控视频的视觉烟雾检测已被作为一种新的环境辅控方式,用于辅助或代替基于烟雾传感器的烟雾检测.但是,工业应用中要求视觉烟雾检测算法在保证误检率低的基础上,要尽可能降低漏检率.针对该问题,基于空间域和频率域方法,提出了一种新的烟雾检测算法,分别在空间域和频率域进行烟雾检测:在空间域上,在提取烟雾运动特性的基础上,设计了提取烟雾“蒙版特性”的方法,以保证较低的漏检率;在频率域上,分别结合滤波模块和神经网络模块,以进一步降低误检率.最后通过融合后处理策略,得到最终检测结果,从而平衡漏检率和误检率.在测试数据集上,所提烟雾检测算法的误检率达到了0.053,漏检率达到了0.113,实现了误检率和漏检率的良好平衡.所提检测方法适用于变电站等实际工业场景的烟雾检测. In industrial scenarios such as substations,video-based visual smoke detection has been adopted as a new environmental monitoring method to assist or replace smoke sensors.However,in industrial applications,visual smoke detection algorithms are required to maintain a low false detection rate while minimizing the missed detection rate.To address this,this study proposes a smoke detection algorithm based on spatial and frequency domain methods,which perform smoke detection in both domains.In the spatial domain,in addition to extracting smoke motion characteristics,this study designed a method for extracting smoke mask characteristics,which effectively ensures a low missed detection rate.In the frequency domain,this study combined filtering and neural network modules to further reduce the false detection rate.Finally,a fusion domain post-processing strategy was designed to obtain the final detection results.In experiments conducted on a test dataset,the smoke detection algorithm achieved a false detection rate of 0.053 and missed detection rate of 0.113,demonstrating a good balance between false alarms and missed detections,which is suitable for smoke detection in substation industrial scenes.
作者 盛连军 汤致轩 茅晓亮 白帆 黄定江 SHENG Lianjun;TANG Zhixuan;MAO Xiaoliang;BAI Fan;HUANG Dingjiang(Fengxian Power Supply Company,State Grid Shanghai Electric Power Company,Shanghai 201499,China;School of Data Science and Engineering,East China Normal University,Shanghai 200062,China;Shanghai Thinking Things Network Technology Co.Ltd.,Shanghai 200439,China)
出处 《华东师范大学学报(自然科学版)》 CAS CSCD 北大核心 2023年第5期147-163,共17页 Journal of East China Normal University(Natural Science)
基金 国家自然科学基金(62072185)。
关键词 视觉烟雾检测 空间域和频率域 神经网络 三维傅里叶变换 visual smoke detection spatial and frequency domains neural network three-dimensional Fourier transform
  • 相关文献

参考文献4

二级参考文献19

  • 1浙江南望图像信息产业有限公司,中国专利9912 6 874.1 被引量:1
  • 2Gomez-Rodriguez F, Arrue B C, Ollero Robotics A. Smoke moni- toring and measurement using image processing, application to forest fires [ C ]//Proceedings of Automatic Target Recognition XI- II, SPIE, Orlando, FL, USA ,2003:404 -- 411. 被引量:1
  • 3Celik T,Demirel H,Ozkaramanli H,et al. Fire detection in video sequences using statistical color model [ C ]///International Confe- rence on Acoustics, Speech, and Signal Processing, 200fi : 213 -- 216. 被引量:1
  • 4Chen T,Wu P,Chiou Y. An early fire-detection method based on image processing[ C ]//Proceeding of IEEE International Confe- rence on Image Processing,2004:1707--1710. 被引量:1
  • 5Tfireyin B Ugur, Yigithan Dedeoglu, Cetin A Enis. Wavelet-based real time smoke detection in video [ C ]//Proceeding of the 13th European Signal Processing Conference, Antalya, Turkey, 2005: 4--8. 被引量:1
  • 6Barnich O, Van Droogenbroeck M. ViBe: A powerful random technique to estimate the background in video sequences [ C ]// Proceedings of+ ICASSP 2009, Taipei : IEEE Computer Society, . , 2009:945 --948. 被引量:1
  • 7Barnich O, Van Droogenbroeck M. ViBe:.An universal hack- ground subtraction algorithm for video sequences [ J ]. IEEE Transactions on Image Processing,2011,20(6) :1709--1724. 被引量:1
  • 8Turgay Gelik, Hiiseyin 0zkaramanl,Hasan Demirel. Fire and smoke detection without sensors : Image processing-based approach [ C ]//15th European Signal Processing Conference, EU- SIPCO 2007, Poznan, Poland ,2007:3 --7. 被引量:1
  • 9Torey in B U, Dedeoglu Y, Cetin A E. Contour-based smoke de- tection in video using wavelets [ C ]//14th European Signal Pro- cessing Conference, EUSIPCO 2006, Florence, Italy,2006 : 123 - 128. 被引量:1
  • 10刘晰雨.基于视频特征的火灾火焰识别算法[D].西安:西安电子科技大学,2009. 被引量:1

共引文献380

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部