期刊文献+

Integrally Closed Ideals of Reduction Number Three

原文传递
导出
摘要 In a Cohen-Macaulay local ring(A,m),we study the Hilbert function of an integrally closed m-primary ideal I whose reduction number is three.,With a mild assump-tion we give an inequality ιA(A/I)≥e0(I)-e1(I)+(e2(I)+lA(I^(2)/QI)/2,where ei(I)denotes the ith Hilbert coeficient and Q denotes a minimal reduction of I.The inequality is located between inequalities of Itoh and Elias-Valla.Furthermore,this inequality be-comes an equality if and only if the depth of the associated graded ring of I is larger than or equal to dim A-1.We also study the Cohen-Macaulayness of the associated graded rings of determinantal rings.
出处 《Algebra Colloquium》 SCIE CSCD 2023年第2期315-324,共10页 代数集刊(英文版)
基金 Supported by JSPS KAKENHI Grant Number JP19J10579 and JP21K13766。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部