期刊文献+

基于联邦卷积神经网络的鱼类检测系统

A Fish Classification System Based on Federal Convolution Neural Network
下载PDF
导出
摘要 由于鱼类数据的多样性以及应用的广泛性,为了进一步提高鱼类检测的效率,以及在处理鱼类图片时提取到更高维的特征来提高鱼类检测的准确率,将卷积神经网络与联邦学习相结合,将鱼类图片数据按照非独立同分布的形式分发给用户。用户在本地训练模型,并将训练好的模型参数上传到云端,云端将完成模型参数的聚合与更新,并将更新好的参数返回到用户的终端,各个用户开始下一轮训练。以此过程来训练网络,并模拟联邦学习的过程。最后,用联邦卷积神经网络、联邦学习以及卷积神经网络分别对野生鱼类数据集上鱼类图片进行图像检测与识别,并将结果做对比。结果表明,联邦卷积神经网络模型最终的分类准确率为33.3%,传统的联邦学习的准确率为26.67%,Resnet50的准确率为87.97%,可以看出联邦卷积神经网络的分类准确率远高于传统的联邦学习。并且联邦卷积神经网络模型在训练轮数较少的情况下就可以得到较好的实验结果。联邦学习作为分布式计算的重要组成部分,它提供的快速模糊化处理以及数据独立的特性,为鱼类分类的效率和数据保护提供了有力保障。卷积神经网络也提高了联邦学习的学习效率。这使得提出的联邦卷积神经网络分类系统相比于传统的联邦学习在分类效率以及分类准确率方面有了较大程度的提高。 Due to the diversity of fish data and the wide range of applications,in order to further improve the efficiency of fish classification and extract higher dimensional features when processing fish images to improve the accuracy of fish classification,the convolutional neural network is combined with federated learning to distribute fish image data to users in the form of nonindependent identically distributed.The user trains the model locally and uploads the trained model parameters to the cloud.The cloud will complete the aggregation and update of model parameters,and return the updated parameters to the user's terminal,and each user will start the next round of training.This process is used to train the network and simulate the process of federated learning.Finally,we use federal convolutional neural network,federal learning,and convolutional neural network to classify fish images on the wild fish dataset,and compare the results.It is showed that the final classification accuracy of the federal convolutional neural network model is 33.3%,the accuracy of the traditional federal learning is 26.67%,the accuracy of Resnet50 is 87.97%.It can be seen that the classification accuracy of the federal convolutional neural network is far higher than that of the traditional federal learning and convolutional neural network.And the federal convolutional neural network model can get better experimental results when the number of training rounds is less.As an important part of distributed computing,federal learning provides fast fuzzy processing and data independence,which provides a strong guarantee for the efficiency of fish classification and data protection.Convolutional neural network also improves the efficiency of federated learning.This makes the proposed federated convolutional neural network classification system has a greater degree of improvement in classification efficiency and classification accuracy than the traditional federated learning.
作者 杨晓雨 周彩凤 YANG Xiao-yu;ZHOU Cai-feng(Hebei Key Laboratory of Physics and Energy Technology,School of Mathematics and Physics,North China Electric Power University,Baoding 071003,China)
出处 《计算机技术与发展》 2023年第9期155-160,共6页 Computer Technology and Development
基金 中央高校基本科研业务费专项资金资助(2020MS137)。
关键词 鱼类分类 联邦学习 分布式计算 卷积神经网络 模糊化处理 fish classification federated learning distributed computing convolutional neural network fuzzy processing
  • 相关文献

参考文献4

二级参考文献36

  • 1张波,唐启升,金显仕.东海高营养层次鱼类功能群及其主要种类[J].中国水产科学,2007,14(6):939-949. 被引量:37
  • 2Rumpf T, R?mer C, Weis M, et al.Sequential support vector machine classification for small-grain weed species discrimination with special regard to cirsium arvense and galium aparine[J].Computers and Electronics in Agriculture, 2012, 80(S): 89-96. 被引量:1
  • 3Arribas J I, Sánchez-Ferrero G V, Ruiz-Ruiz G, et al.Leaf classification in sunflower crops by computer vision and neural networks[J].Computers and Electronics in Agriculture, 2011, 78(1): 9-18. 被引量:1
  • 4R?mer C, Bürling K, Hunsche M, et al.Robust fitting of fluorescence spectra for pre-symptomatic wheat leaf rust detection with support vector machines[J].Computers and Electronics in Agriculture, 2011, 79(2): 180-188. 被引量:1
  • 5White D J, Svellingen C, Strachan N J C.Automated measurement of species and length of fish by computer vision[J].Fisheries Research, 2006, 80(2): 203-210. 被引量:1
  • 6Alsmadi M K, Omar K B, Noah S A, et al.Fish recognition based on robust features extraction from size and shape measurements using neural network[J].Journal of Computer Science, 2010, 6(10): 1088-1094. 被引量:1
  • 7Xin Y, Pawlak M, Liao S.Accurate computation of Zernike moments in polar coordinates[J].IEEE Transactions on Image Processing, 2007, 16(2): 581-587. 被引量:1
  • 8Yap P T, Paramesran R, Ong S H.Image analysis by Krawtchouk moments[J].IEEE Transactions on Image Processing, 2003, 12(11): 1367-1377. 被引量:1
  • 9Alsmadi M K, Omar K B, Noah S A M.Fish classification based on robust features extraction from color signature using back-propagation classifier[J].Journal of Computer Science, 2010, 7(1): 52-58. 被引量:1
  • 10Hu Jing, Li Daoliang, Duan Qingling, et al.Fish species classification by color, texture and multi-class support vector machine using computer vision[J].Computers and Electronics in Agriculture, 2012, 88(s): 133-140. 被引量:1

共引文献61

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部