期刊文献+

关注药物不良反应信号检测研究中的常见问题 被引量:5

Pay attention to common problems in signal detection study of adverse drug reactions
原文传递
导出
摘要 药物不良反应(ADR)信号检测是药物上市后药物警戒的一种重要研究方法。近年来,我国ADR信号检测研究文献的数量明显增加。但该类研究中尚存在许多问题,如对ADR信号的概念认识不清、信号检测研究的目的不明、信号来源局限、对检测数据未进行很好的处理、数据挖掘算法单一、数据选择的时间范围过短、未对信号检测中的偏倚进行处理和分析等。本文对这些常见问题谈一些看法,希望对我国ADR信号检测研究的质量提升有所帮助。 Signal detection of adverse drug reaction(ADR)is an important research method in post marketing pharmacovigilance.In recent years,the number of literature on ADR signal detection in China has increased significantly.However,there are still many problems in this kind of research,such as unclear understanding of the concept of ADR signal,unclear purpose of signal detection research,limited signal source,inadequate processing of data in detection,unduly single data mining algorithm,unduly short time period in data selection,and no processing and analysis on bias in signal detection.This paper provides some views on these common problems in order to improve the quality of ADR signal detection research in China.
作者 赵彬 Zhao Bin(Department of Pharmacy,Peking Union Medical College Hospital,Peking Union Medical College,Chinese Academy of Medical Sciences,Beijing 100730,China)
出处 《药物不良反应杂志》 CSCD 2023年第8期449-453,共5页 Adverse Drug Reactions Journal
基金 北京协和医院中央高水平医院临床科研专项(2022-PUMCH-B-058) 中国药学会医院药学专业委员会人才专项资助项目(CPA-Z05-ZC-2022-003)。
关键词 药物警戒 药物相关副作用和不良反应 药物不良反应报告系统 信号检测 Pharmacovigilance Drug-related side effects and adverse reaction Adverse drug reaction reporting systems Signal detection
  • 相关文献

参考文献9

二级参考文献88

  • 1Hauben M, Bate A. Decision support methods for the detection of adverse events in post-marketing data[J]. Drug Discovery Today, 2009, 14:343-357. 被引量:1
  • 2Almenoff J S, LaCroix K K, Yuen N A, et al. Comparative Performance of Two Quantitative Safety Signalling Methods: Implications for Use in a Pharmacovigilance Department[J]. Drug Saf, 2006, 29 (10): 875-887. 被引量:1
  • 3Woo E J, Ball R. Burwen D R, et al. Effects of stratification on data mining in the US Vaccine Adverse Event Reporting System (VAERS)[J]. Drug Saf, 2008, 31 (8): 667-674. 被引量:1
  • 4Evans S J. Stratification for spontaneous report databases[J]. Drug Saf, 2008;31(11):1049-1052. 被引量:1
  • 5Hopstadius J, Nor e n G N, Bate A, et al. Impact of stratification in adverse drug reaction surveillance[J]. Drug Saf, 2008, 31 (11): 1035- 1048. 被引量:1
  • 6Hauben M, Madigan D, Gerrits C M, et al. The role of data mining in pharmacovigilance[J]. Expert Opinion Drug Safe, 2005, 4(5): 929-948. 被引量:1
  • 7Almenoff J S, Pattishall E N, Gibbs T G, et al. Novel statistical tools for monitoring the safety of marketed drugs[J]. Clin Pharmacol Ther, 2007, 82 (2): 157-166. 被引量:1
  • 8Genkin A, Lewis DD & Madigan D. BBR: Bayesian Logistic Regression Software[EB/OL]. [2009-12-20] .http://www.stat.rutgers. edu/Bmadigan/BBR/(accessed 23 April 2007). 被引量:1
  • 9van Puijenbroek E P, Egberts A C, Heerdink E R, et al. Detecting drug-drug interactions using a database for spontaneous adverse drug reactions: an example with diuretics and non-steroidal antiinflammatory drugs[J]. European Journal of Clinical Pharmacology, 2000, 56: 733-738. 被引量:1
  • 10Noren G N, Sundberg R, Bate A, et al. A statistical methodology for drug drug interaction surveillance[J]. Stat Med, 2008, 27: 3057- 3070. 被引量:1

共引文献62

同被引文献14

引证文献5

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部