期刊文献+

一种基于接收信号强度指示测距机制的空气质量监测系统节点定位算法

A Node Positioning Algorithm of Air Quality Monitoring System Based on Received Signal Strength Indicator Ranging Mechanism
下载PDF
导出
摘要 针对空气质量监测节点定位的实际需求,提出应用校正法和递推最小二乘(LS)估计算法的空气质量无线监测定位实施方案。通过估算获得各节点间距离,精确计算出信标节点间的测量值与实际值,再计算得信标节点的相对偏差系数,以校正由接收信号强度指示(RSSI)模型估算的待测节点与信标节点间的距离,最后使用源于观测数据的递推LS算法计算出未知节点的位置信息。仿真试验显示,当节点数N=100时,区域边沿处位置偏差Ei均值稳定在0.268 9 m以下,在相同的信标点数目与相同的距离偏差时,所提算法和普通的LS算法相比较,获得的位置偏差和算法耗时分别减少了0.045 3 m和0.742 s。所提算法在提高定位精度的同时,降低了信标节点间的距离测量误差等条件对定位准确度的干扰,适用于大型公共场所的空气质量监测系统中。 According to the actual requirements of air quality monitoring node positioning,the implementation scheme of wireless air quality monitoring positioning with the correction method and recurrent least square(LS)estimation is proposed.The distance between each node is obtained by estimation,the measured value and the actual value between the beacon nodes are accurately calculated,and then the relative deviation coefficient of the beacon nodes is calculated to correct the distance between the measured nodes and the bea-con nodes estimated by the Received Signal Strength Indicator(RSSI)model.Finally,the positional information of the unknown nodes is computed using a recursive LS algorithm derived from the observed data.The simulation test shows that when the number of nodes N is 100,the average position deviation(Ei)at the edge of the region is stably below 0.2689 m.When the number of beacon points is the same and the distance deviation is also the same,the position deviation and algorithm time consumption obtained by the proposed algo-rithm are reduced by 0.0453 m and 0.742 s respectively compared with the ordinary LS algorithm.The proposed algorithm not only im-proves the positioning accuracy,but also reduces the interference of conditions such as distance measurement error between beacon nodes to the positioning accuracy,and it is suitable for the air quality monitoring system in large public places.
作者 常波 张智尧 张新荣 CHANG Bo;ZHANG Zhiyao;ZHANG Xinrong(Faculty of Electronic Engineering,Huaiyin Institute of Techenology,Huaian Jiangsu 223003,China;College of Mechanical Engineering and Automation,Dalian Polytechnic University,Dalian Liaoning 116034,China;Faculty of Automation,Huaiyin Institute of Techenology,Huaian Jiangsu 223003,China)
出处 《电子器件》 CAS 北大核心 2023年第4期1056-1061,共6页 Chinese Journal of Electron Devices
基金 江苏省产学研合作项目(BY2021419,BY2022403) 校企合作基金创新训练项目(202011049106H,202111049169) 教育部产学合作协同育人项目(202102296008)。
关键词 空气质量监测 无线传感器网络 定位 RSSI测距 RLS算法 air quality monitoring wireless sensor network positioning RSSI ranging RLS algorithms
  • 相关文献

参考文献3

二级参考文献12

共引文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部