摘要
利用制备型高效液相色谱仪从桦褐孔菌中分离并鉴定出12种酚类化合物,通过钼酸铵显色法分析酚类化合物对过氧化氢酶的影响。结果表明,原儿茶醛、Phelligridin E和Phelligridin I显示出增强过氧化氢酶活性的能力,特别是Phelligridin E;经终浓度分别为0.5、1.0、2.0、3.0、4.0、5.0μmol/L的Phelligridin E处理后,过氧化氢酶的活性分别增加了41.90%、44.68%、52.66%、58.10%、62.78%和68.10%。通过分子对接和分子动力学模拟分析Phelligridin E激活过氧化氢酶的机制,结果显示,Phelligridin E与过氧化氢酶的ASN369、HIS372、ILE373形成较强的疏水作用力,与过氧化氢酶的ASP25、ASN369、HIS372、PRO391和CYS393形成氢键。应用gmx_MMPBSA进行自由能分解,结果显示,过氧化氢酶的GLU67、ILE373和PRO391对Phelligridin E与过氧化氢酶的结合贡献较大,其中,ILE373与Phelligridin E形成距离为3.63Å的疏水作用力;PRO391与Phelligridin E形成距离为2.54Å的氢键;过氧化氢酶的GLU67未与Phelligridin E形成4Å范围内的作用力,但是GLU67在空间上位于ASP25附近,ASP25与Phelligridin E之间的氢键可能导致GLU67的能量分布发生改变。Phelligridin E与过氧化氢酶之间的疏水作用力和氢键使过氧化氢酶的VAL41、CYS393、ASP396、GLY399和GLY400发生二面角扭转。这些位置氨基酸残基的二面角扭转推动ASN33-GLN53形成B-Sheet、CYS393-ASN403形成5-He⁃lix、ASN433-ASP438形成3-Helix。过氧化氢酶二级结构的转变增加了活性中心上下区域之间的距离,增加了底物进入活性中心的途径,增强了过氧化氢酶消除过氧化氢的能力。
In this work,twelve phenolic compounds were isolated and identified from Inonotus Obliquus using preparative high-performance liquid chromatography.The effect of the phenolic compounds on catalase was analyzed by ammonium molyb⁃date colour development.The results showed that protocatechuic aldehyde,phelligridin E,and phelligridin I showed the ability to enhance catalase activity,especially Phelligridin E.treatments with phelligridin E at final concentrations of 0.5,1.0,2.0,3.0,4.0,and 5.0μmol/L increased catalase activity by 41.90%,44.68%,52.66%,58.10%,62.78%,and 68.10%,respectively.The mechanism of catalase activation by phelligridin E was analyzed by molecular docking and molecular dynamics simulations.The results of analysis showed that Phelligridin E formed strong hydrophobic forces with ASN369,HIS372,and ILE373 of cata⁃lase,and formed hydrogen bonds with ASP25,ASN369,HIS372,PRO391,and CYS393 of catalase.The application of gmx_MMPBSA for free energy decomposition showed that GLU67,ILE373,and PRO391 of catalase contributed more to the binding of phelligridin E to catalase.Among them,ILE373 formed a hydrophobic force with phelligridin E at a distance of 3.63Åand PRO391 formed a hydrogen bond with phelligridin E at a distance of 2.54Å.GLU67 of catalase did not form an interaction with phelligridin E in the distance range of 4Å,but GLU67 was spatially located near ASP25.The hydrophobic force and hydro⁃gen bond between phelligridin E and catalase caused dihedral angle reversal in VAL41,CYS393,ASP396,GLY399,and GLY400 of catalase.The dihedral twisting of amino acid residues at these positions drove ASN33-GLN53 to form a B-Sheet,CYS393-ASN403 to form a 5-Helix,and ASN433-ASP438 to form a 3-Helix.The transformation of the catalase secondary structure increased the distance between the upper and lower surroundings of the active center of catalase,increasing the access of substrates to the active center and enhancing the ability of catalase to eliminate hydrogen peroxide.
作者
郝瑞林
单树花
胡晓燕
张志怡
李荣山
李卓玉
HAO Ruilin;SHAN Shuhua;HU Xiaoyan;ZHANG Zhiyi;LI Rongshan;LI Zhuoyu(Institute of Biotechnology,Shanxi University,Taiyuan 030006,China;Department of Biology,Xinzhou Normal University,Xinzhou 034000,China;Shanxi Provincial People´s Hospital,Taiyuan 030006,China)
出处
《山西农业科学》
2023年第9期1050-1059,共10页
Journal of Shanxi Agricultural Sciences
基金
国家自然科学基金(面上项目)(32072220)。
关键词
桦褐孔菌
酚类化合物
过氧化氢酶
分子对接
分子动力学模拟
I nonotus obliquus
phenolic compounds
catalase
molecular docking
molecular dynamics simulation