摘要
提出一种自适应变分模态分解(VMD)—希尔伯特(Hilbert)边际谱样本熵和最小二乘支持向量机(LSSVM)提取球磨机振动信号组合特征并预测负荷参数的方法。首先,使用自适应VMD的振动敏感信号调制来分解振动,得到反映振动特性的本征模态函数(IMF)分量;之后,进行Hilbert变换,得到边际谱样本熵;最后,将其作为输入特征向量输入到LSSVM,实现球磨机负荷参数预测。试验结果表明:该方法可以有效地提取球磨机的非线性不稳定的信号特征,较为精确地预测球磨机负荷参数。
An adaptive variational mode decomposition(VMD)-Hilbert marginal spectrum sample entropy and least square support vector machine(LSSVM)method is proposed to extract the combination characteristics of ball mill vibration signals and predict the load parameters.Firstly,the vibration sensitive modulation of the adaptive VMD is used to decompose the vibration,intrinsic mode function(IMF)components,which reflects the vibration characteristics followed by the Hilbert transform,the marginal spectrum sample entropy is obtained.Finally,it is input to the LSSVM as input feature vectors to realize forecasting of ball mill load parameters.The experimental results show that this method can effectively extract the nonlinear and unstable signal characteristics of ball mill and accurately predict the load parameters of ball mill.
作者
蔡改贫
李波波
赵鑫
刘吉顺
CAI Gaipin;LI Bobo;ZHAO Xin;LIU Jishun(School of Mechanical and Electrical Engineering,Jiangxi University of Science and Technology,Ganzhou 341000,China;Jiangxi Mining and Metallurgy Mechanical and Electrical Engineering Technology Research Center,Ganzhou 341000,China)
出处
《传感器与微系统》
CSCD
北大核心
2023年第9期133-136,共4页
Transducer and Microsystem Technologies
基金
国家自然科学基金资助项目(51464017)
江西省重点研发计划资助项目(20181ACE50034)。
关键词
自适应变分模态分解
希尔伯特变换
最小二乘支持向量机
球磨机负荷参数
adaptive variational mode decomposition(VMD)
Hilbert transform
least square support vector machine(LSSVM)
ball mill load parameter