期刊文献+

基于模糊C均值聚类算法模型的核电厂蓄电池运维更换策略研究

Research on the Replacement Strategy of Nuclear Power Plant Battery Operation and Maintenance Based on Fuzzy C-means Clustering Algorithm Model
下载PDF
导出
摘要 针对核电厂运维中的蓄电池整组更换最优策略问题,以某厂在役的GroE型蓄电池1BTG14等6组636只电池样本为实验研究对象,在研究容量试验放电电压曲线的基础上,选取最近三次大修该曲线的特征点,利用数据聚类分析技术建立模糊C均值聚类算法模型,并通过有效性函数选取最优实验结果,对基于电压特征数据呈现的分类结果进行研究,从而得出相同运行条件下蓄电池组的最优更换策略。该方法在保证性能可靠的基础上实现蓄电池在寿期内的充分利用,从而节约核电厂运维经济成本,实现经济效益最大化。 Aiming at the problem of the optimal strategy of battery replacement in the operation and maintenance of nuclear power plants,six groups of 636 battery samples such as GroE battery 1BTG14 in service in a plant were taken as experimental research objects.On the basis of studying the discharge voltage curve of capacity test,the characteristic points of the curve of the last three overhauls were selected,and the fuzzy C-means clustering algorithm model was established using cluster analysis analysis technology,and the optimal experimental results were selected through the effectiveness function,Study the classification results presented based on voltage characteristic data to obtain the optimal replacement strategy for battery packs under the same operating conditions.This method achieves full utilization of batteries within their lifespan while ensuring reliable performance,thereby saving economic costs for nuclear power plant operation and maintenance and maximizing economic benefits.
作者 张睿 徐鹏 吕晨勇 Zhang Rui;Xu Peng;Lv Chenyong(Jiangsu Nuclear Power Co.,Ltd,Lianyungang 222042,China)
出处 《智能建筑电气技术》 2023年第4期12-15,82,共5页 Electrical Technology of Intelligent Buildings
关键词 蓄电池 聚类分析 电压 电压平台 运维 核电厂 battery cluster analysis voltage voltage platform operation and maintenance nuclear power plant
  • 相关文献

参考文献4

二级参考文献41

  • 1齐智,吴锋,陈实,于卿,王国庆.利用人工神经网络预测电池SOC的研究[J].电源技术,2005,29(5):325-328. 被引量:27
  • 2孙凯,鞠晓峰,李煜华.基于变异系数法的企业孵化器运行绩效评价[J].哈尔滨理工大学学报,2007,12(3):165-167. 被引量:60
  • 3Bezdek J C. Pattern Recognition with Fuzzy Objective Function Algorithms. New York:Plenum Press, 1981. 被引量:1
  • 4Pal N R, Bezdek J C. On cluster validity for the fuzzy c-mean model. IEEE Transactions on Fuzzy Systems, 1995,3 (3): 370-379. 被引量:1
  • 5Fadili M J, Ruan S, Bloyet D, Mayoyer B. On the number of clusters and the fuzziness index for unsupervised FCA application to BOLD fMRI time series. Medical Image Analysis,2001,5(1) :55-67. 被引量:1
  • 6Yu Jian,Cheng Qian-Sheng, Huang Hou-Kuan. On weighting exponent of the fuzzy c-means model. In: Proceedings of ICYCS2001, Hangzhou, 2001, II : 631- 633. 被引量:1
  • 7Bezdek J C, Hathaway R J, Sabin M J, Tucker W. Convergence theory for fuzzy c-means: Counter-examples and repairs.IEEE Transactions on SMC, 1987,17(5): 873-877. 被引量:1
  • 8Choe H,Jordan J B. On the optimal choice of parameters in a fuzzy c-means algorithm. In: Proceedings of IEEE International Conference on Fuzzy Systems, 1992. 349-354. 被引量:1
  • 9Yi Shen, Hong Shi, Jian Qiu-Zhang. Improvement and optimization of a fuzzy c-means clustering algorithm. In: Proceedings of IEEE Instrumentation and Measurement Technology Conference, Budapest, Hungary, 2001. 被引量:1
  • 10Tucker WT. Couterexamples to the convergence theorem for fuzzy ISODATA clustering algorithm. In: Bezdek J C ed. The Analysis of fuzzy Information, Boca Raton, FL: CRC Press,1987, 3:110-117. 被引量:1

共引文献102

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部