摘要
Autophagy plays an important role in the interaction between viruses and host cells.SARS-CoV-2 infection can disrupt the autophagy process in target cells.However,the precise molecular mechanism is still unknown.In this study,we discovered that the Nsp8 of SARS-CoV-2 could cause an increasing accumulation of autophagosomes by preventing the fusion of autophagosomes and lysosomes.From further investigation,we found that Nsp8 was present on mitochondria and can damage mitochondria to initiate mitophagy.The results of experiments with immunofluorescence revealed that Nsp8 induced incomplete mitophagy.Moreover,both domains of Nsp8 orchestrated their function during Nsp8-induced mitophagy,in which the N-terminal domain colocalized with mitochondria and the C-terminal domain induced auto/mitophagy.This novel finding expands our understanding of the function of Nsp8 in promoting mitochondrial damage and inducing incomplete mitophagy,which helps us to understand the etiology of COVID-19 as well as open up new pathways for creating SARS-CoV-2 treatment methods.
基金
supported by the National Natural Science Foundation of China (grant numbers 32100131 and 31670716)
Wuhan Science and Technology Bureau[grant numbers 2020020601012318]
Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine) (grant numbers WDCM2022008)
Jianghan University (grant numbers 08190006,06210035,2021yb138 and 2019037).