期刊文献+

Progress in self-powered sensors—Moving toward artificial intelligent and neuromorphic system

原文传递
导出
摘要 Wearable and flexible electronics are shaping our life with their unique advantages of light weight,good compliance,and desirable comfortability.With marching into the era of Internet of Things(IoT),numerous sensor nodes are distributed throughout networks to capture,process,and transmit diverse sensory information,which gives rise to the demand on self-powered sensors to reduce the power consumption.Meanwhile,the rapid development of artificial intelligence(AI)and fifth-generation(5G)technologies provides an opportunity to enable smart-decision making and instantaneous data transmission in IoT systems.Due to continuously increased sensor and dataset number,conventional computing based on von Neumann architecture cannot meet the needs of brain-like high-efficient sensing and computing applications anymore.Neuromorphic electronics,drawing inspiration from the human brain,provide an alternative approach for efficient and low-power-consumption information processing.Hence,this review presents the general technology roadmap of self-powered sensors with detail discussion on their diversified applications in healthcare,human machine interactions,smart homes,etc.Via leveraging AI and virtual reality/augmented reality(VR/AR)techniques,the development of single sensors to intelligent integrated systems is reviewed in terms of step-by-step system integration and algorithm improvement.In order to realize efficient sensing and computing,brain-inspired neuromorphic electronics are next briefly discussed.Last,it concludes and highlights both challenges and opportunities from the aspects of materials,minimization,integration,multimodal information fusion,and artificial sensory system.
出处 《Nano Research》 SCIE EI CSCD 2023年第9期11801-11821,共21页 纳米研究(英文版)
基金 supported by the Reimagine Research Scheme(RRSC)grant(“Scalable AI Phenome Platform towards Fast-Forward Plant Breeding(Sensor)”,Nos.A-0009037-02-00 and A-0009037-03-00)at NUS,Singapore the Reimagine Research Scheme(RRSC)grant(“Under-utilised Potential of Micro-biomes(soil)in Sustainable Urban Agriculture”,No.A-0009454-01-00)at NUS,Singapore the RIE advanced manufacturing and engineering(AME)programmatic grant(“Nanosystems at the Edge”,No.A18A4b0055)at NUS,Singapore.
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部