期刊文献+

基于CEEMDAN-BO-LSTNet的风电出力短期预测 被引量:6

Short-term forecasting of wind power output based on CEEMDAN-BO-LSTNet
下载PDF
导出
摘要 为提高风电出力预测精度,提出一种自适应噪声完备集合经验模态分解(CEEMDAN)-贝叶斯优化(BO)-长短期时序网络(LSTNet)对风电机组输出功率进行短期预测。清洗数据,采用CEEMDAN对清洗后的原始功率数据进行分解,得到若干个子序列;将分解得到的子序列输入至LSTNet模型,通过对LSTNet的超参数使用BO算法优化,输出子序列的预测结果;将各序列的预测结果进行叠加重构得到最终预测结果。通过对渭南某风电场机组实测数据进行实例仿真,设置消融分析和对比分析,结果表明文中所提方法相较于其他模型,预测精度得到有效提升。 In order to improve the prediction accuracy of wind power output,an adaptive noise-complete ensemble empirical mode decomposition(CEEMDAN)-Bayesian optimization(BO)-long and short-term time-series network(LSTNet)is proposed to predict the output power of wind turbines in the short term.Firstly,the data are cleaned,and then,CEEMDAN is used to decompose the original power data after cleaning,and several sub-sequences are obtained.The decomposed subsequences are input into the LSTNet model,the LSTNet hyperparameters are optimized by using BO algorithm,and output the prediction results of the subsequences.Finally,the prediction results of each sequence are superimposed and reconstructed to obtain the final prediction results.Through the example simulation of the measured data of a wind farm unit in Weinan,ablation analysis and comparative analysis are set up.The results show that compared with other models,the prediction accuracy of the proposed method is effectively improved.
作者 庞博文 丁月明 杜善慧 谭亲跃 康定毅 尚文强 Pang Bowen;Ding Yueming;Du Shanhui;Tan Qinyue;Kang Dingyi;Shang Wenqiang(College of Water Conservancy and Civil Engineering,Northwest A&F University,Xianyang 712100,Shaanxi,China;Rizhao Power Supply Company,State Grid Shandong Electric Power Co.,Ltd.,Rizhao 276800,Shandong,China)
出处 《电测与仪表》 北大核心 2023年第9期109-116,170,共9页 Electrical Measurement & Instrumentation
基金 国家电网公司总部科技项目(5400-202216167A-1-1-ZN)。
关键词 风电出力 短期预测 长短期时序网络 自适应噪声完备集合经验模态分解 贝叶斯优化 wind power output short-term forecasting long and short-term time-series network adaptive complete empirical mode decomposition Bayesian optimization
  • 相关文献

参考文献21

二级参考文献310

共引文献470

同被引文献109

引证文献6

二级引证文献2

  • 1陈海生,李泓,徐玉杰,徐德厚,王亮,周学志,陈满,胡东旭,阎景旺,李先锋,胡勇胜,安仲勋,刘语,肖立业,蒋凯,钟国彬,王青松,李臻,戴兴建,张宇鑫,俞振华,宋振,彭煜民,马一鸣,郭欢,王星,周鑫,胡傲伟,张弛,相佳媛,张浩,刘为,岳芬,张长昆,谢飞,夏恒恒,杨重阳,邱清泉,艾巍,李浩秒,刘轩,梅文昕,李煌.2023年中国储能技术研究进展[J].储能科学与技术,2024,13(5):1359-1397.
  • 2黄思远,王晨,梁婷,姜竹,李佳静,折晓会,张小松.液态空气储能耦合综合能源系统热电联储联供优化配置研究[J].储能科学与技术,2024,13(6):1929-1939.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部