摘要
采用大压下率包套热轧法成功制备了界面无缺陷的Ti-6Al-4V(质量分数,%)/Ti-43Al-3V-2Cr(原子分数,%)复合板,并对复合板的显微组织和力学性能进行了研究。结果表明,界面区域无明显缺陷,成功避免了Kirkendall现象。复合板界面厚度约为230μm,根据相组成不同,可将界面分为2个区域,其中1区域为近Ti-6Al-4V合金界面处,主要由α/α_(2)+β/B2组成;界面2区域为近TiAl合金界面处,主要由α/α2+β/B2+γ组成。界面区域组织是由于Ti-6Al-4V合金中Ti元素扩散到TiAl合金层以及TiAl层的Al和Cr元素扩散到Ti-6Al-4V合金层所致。测试了复合板的界面维氏硬度和不同加载方式的三点抗弯强度。结果表明,界面1区域具有最高的显微硬度,横向试件垂直表面加载时复合板表现出最佳的抗弯能力,抗弯强度达到1150.82 MPa。基体和界面区域均为脆性断裂,界面结合处未发生断裂。
Ti-6Al-4V(wt%)/Ti-43Al-3V-2Cr(at%) composite clad plate without interfacial defects was successfully prepared by a high-reduction hot-rolling method.Microstructure and mechanical properties were studied.The experimental results show that no obvious defects in the interfacial region is observed,and the Kirkendall phenomenon is successfully avoided.The interface thickness of the composite plate is about 230 μm,according to different phase compositions,the interface is divided into two regions,one of which is the interface near Ti-6Al-4V alloy and is mainly composed of α/α_(2)+β/B2 phases;region 2 is the interface near TiAl alloy,and mainly consists of α/α2+β/B2+γ phases.The forming of interface region structure is due to the diffusion of Ti element from Ti-6Al-4V alloy to TiAl alloy layer and the diffusion of Al and Cr elements from TiAl layer to Ti-6Al-4V layer.The Vickers hardness and three-point flexural resistant strength of the composite panels were tested.The experimental results show that the interface region 1 has the highest microhardness,and the composite plate exhibits the best bending resistance when the surface of the transverse specimen was loaded,and the bending strength reaches 1150.82 MPa.The bending fractures of the alloy layers and interfacial region are brittle fractures,there is no cracking in the interfacial region.
作者
王昊
高天宝
卫俊鑫
张孟非
邓瑞君
贾燚
韩建超
Wang Hao;Gao Tianbao;Wei Junxin;Zhang Mengfei;Deng Ruijun;Jia Yi;Han Jianchao(College of Mechanical and Vehicle Engineering,Taiyuan University of Technology,Taiyuan 030024,China;Engineering Research Center of Advanced Metal Composite Forming Technology and Equipment,Ministry of Education,TaiyuanUniversity of Technology,Taiyuan 030024,China)
出处
《稀有金属材料与工程》
SCIE
EI
CAS
CSCD
北大核心
2023年第7期2485-2493,共9页
Rare Metal Materials and Engineering
基金
国家自然科学基金(51904205)
中央引导地方科技发展资金(YDZJSX2021A020,YDZX20191400002149)
轧制技术及连轧自动化国家重点实验室(东北大学)开放课题基金(2020RALKFKT014)
中国博士后科学基金(2018M641681)。