期刊文献+

供水系统水厂临界减产率的分析及应用初探

Analysis of Drinking Water Plant Critical Production Reduction Rate in Water Supply System and Its Application
原文传递
导出
摘要 保障管网中不出现“失压断流”是供水系统的安全底线之一,据此提出了水厂“临界减产率”概念作为非正常工况下控制水厂减产量的决策依据之一。从社会心理学角度提出了管网中最小自由水压为0.5 m且节点范围不超过500 m作为是否出现“失压断流”的参考标准。采用压力驱动模型,以逐步减量方式测算“临界减产率”,结果表明,某市大型水厂的临界减产率为40%~50%,当水厂的产水率为10%~30%时,最大减产运行时间为6.25~12.50 h。 To ensure that there is no“loss of pressure or flow”in the pipe network is one of the safe bottom lines of water supply system.Therefore,the concept of“critical production reduction rate”of drinking water plant was proposed as one of the decision‑making bases to control the production reduction of drinking water plant under abnormal working conditions.From the perspective of social psychology,this paper proposed that the minimum free water pressure in the pipe network was 0.5 m and the node range was not more than 500 m as the reference standard for whether there was“loss of pressure or flow”.The pressure driven model was used to calculate the“critical production reduction rate”by stepwise reduction method.The critical production reduction rate of a large drinking water plant in a city was estimated to be between 40%and 50%.When the water production rate of the drinking water plant was between 10%and 30%,the maximum reduction operation time was between 6.25 h and 12.50 h.
作者 龙志宏 许刚 朱子朋 张邢 程伟平 LONG Zhi‑hong;XU Gang;ZHU Zi‑peng;ZHANG Xing;CHENG Wei‑ping(Guangzhou Water Supply Co.Ltd.,Guangzhou 510600,China;College of Civil Engineering and Architecture,Zhejiang University,Hangzhou 310058,China)
出处 《中国给水排水》 CAS CSCD 北大核心 2023年第13期76-80,共5页 China Water & Wastewater
基金 住房和城乡建设部科学技术计划项目(2022-K-161) 浙江省重点研发计划项目(2021C03017) 广州市自来水有限公司科研项目(科技19-9)。
关键词 供水系统 水厂临界减产率 压力驱动模型 water supply system critical production reduction rate of drinking water plant pressure driven model
  • 相关文献

参考文献6

二级参考文献39

  • 1廖振良,俞国平,叶伯明.多水源给水管网宏观模型的开发与应用[J].同济大学学报(自然科学版),2004,32(9):1188-1191. 被引量:8
  • 2[1]Robert Demoyer Jr,Lawrence B Horwitz.Macroscopic Distribution-System Modeling[J].AWWA,1975,7. 被引量:1
  • 3[4]Avi Ostfeld.Optimal design and operation of multiquality networks under unsteady eonditions.Journal of Water Resources Planning and Management[J].2005,133:116-124. 被引量:1
  • 4[5]Avi Ostfeld.Optimal simultaneous design and operation of multi-quality water distribution systems under unsteady hydraulies.world water congress,2004. 被引量:1
  • 5[6]Tatejewski P.A Suboptimal Approach to Scheduling of Reservoir Levels for a Multi-Reservoir Water distribution Network[J].Computer Applications in Water Supply,1988,2:225-239. 被引量:1
  • 6[9]Demoyer Jr,Lawrence B.Horwitz.Macroscopic Distribution System Modeling[J].Journal of the Amerieal Water Works Assoeiation.1975,67(7):377-380. 被引量:1
  • 7[10]Jowitt,Chengchao Xu.Predicting.Pipe Failure Effects in Water Distribution Networks[J].Journal of Water Resources Planning and Management.1993,119(1):18-31. 被引量:1
  • 8[12]洪宾.给水管网系统理论与分析[M].北京:中国建筑工业出版社,2003. 被引量:1
  • 9Almandoz J,Cabrera E M,Arregui F,et al.Leakage assessment through water distribution network simulation[J].J Water Resour Plan Manage,2005,131(6):458-466. 被引量:1
  • 10Colombo A F,Kamey B W.Energy and costs of leaky pipes:Toward a comprehensive picture[J].J Water Resour Plan Manage,2002,128(6):441-450. 被引量:1

共引文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部