期刊文献+

基于ICM20948多传感器系统的FPGA数据同步采集方法 被引量:1

FPGA Data Synchronization Acquisition Method Based on ICM20948 Multi-sensor System
下载PDF
导出
摘要 针对多个ICM20948九轴传感器在采样率上存在微小差异,且无法从芯片端输入同步参考时钟进行多片同步的问题,提出一种基于ICM20948多传感器系统的FPGA数据同步采集方法。利用划分置信区间的方法实现多个ICM20948九轴传感器数据的同步采集,确保数据同步采集精度为毫秒级别。实验结果表明,多个ICM20948九轴传感器的加速度计和陀螺仪的数据同步采集精度约为10ms,磁力计的数据同步采集精度约为100 ms,验证了该方法的有效性。 A FPGA data synchronization acquisition method based on the ICM20948 multi-sensor system is proposed to address the issue of small differences in sampling rates among multiple ICM20948 nine axis sensors and the inability to input synchronous reference clocks from the chip for multi-chip synchronization.The method of dividing confidence intervals is used to achieve synchronous collection of data from multiple ICM20948 nine axis sensors,ensuring that the accuracy of data synchronous collection is at the millisecond level.The experimental results show that the data synchronization acquisition accuracy of accelerometers and gyroscopes with multiple ICM20948 nine axis sensors is about 10 ms,and the data synchronization acquisition accuracy of magnetometers is about 100 ms,verifying the effectiveness of this method.
作者 卢进 吴昌隆 柳建鑫 LU Jin;WU Changlong;LIU Jianxin(Guangdong Institute of Artificial Intelligence and Advanced Computing,Guangzhou 510000,China)
出处 《自动化与信息工程》 2023年第4期28-32,共5页 Automation & Information Engineering
基金 广州市科技计划项目(202201000009)。
关键词 ICM20948九轴传感器 数据同步采集 多传感器系统 现场可编程门阵列 置信区间 ICM20948 nine axis sensor synchronous data collection multi-sensor system field programmable gate array confidence interval
  • 相关文献

参考文献11

  • 1朱辰霄,颜陆胜,刘东滟,徐祥.阵列式MEMS-IMU系统的设计与实现[J].电子制作,2022,30(11):11-14. 被引量:2
  • 2陈海鲁..骨折康复的多模态诊疗系统研究[D].浙江大学,2023:
  • 3李鹏飞..基于室内地磁信息的移动机器人定位方法[D].西安电子科技大学,2019:
  • 4陈飞..基于nRF52832蓝牙芯片与ICM20948九轴传感器的人运动姿态检测器设计[D].南京理工大学,2020:
  • 5张天麟..多传感信息融合的机械臂末端位姿测量[D].南京邮电大学,2019:
  • 6白悦章..基于多传感器融合的目标追踪与定位估计技术研究[D].吉林大学,2019:
  • 7唐悦..IMU的行人室内定位研究[D].浙江工商大学,2018:
  • 8张金艺,徐德政,李若涵,陈兴秀,徐秦乐.9轴MEMS-IMU实时姿态估算算法[J].上海大学学报(自然科学版),2015,21(5):547-559. 被引量:10
  • 9李锦明,刘梦欣,成乃朋,成雅丽.基于FPGA的多路无线数据采集系统设计[J].中国测试,2019,45(12):102-105. 被引量:18
  • 10白宇强..无人汽车的IMU/5G毫米波组合定位方法[D].北京交通大学,2021:

二级参考文献24

  • 1FOXLIN E. Inertial head-tracker sensor fusion by a complementary separate-bias KMman filter [C]//Virtual Reality Annual International Symposium. 1996: 185-194. 被引量:1
  • 2ZHANG R, HOEFLINGER F, REINDL L. Inertial sensor based indoor localization and monitoring system for emergency responders [J]. IEEE Sensors Journal, 2013, 13(2): 838-848. 被引量:1
  • 3LEE J K, PARK E J. Minimum-order Kalman filter with vector selector for accurate estimation of human body orientation [J]. IEEE Transactions on Robotics, 2009, 25(5): 1196-1201. 被引量:1
  • 4SHUSTER M D. Filter QUEST or REQUEST [J]. Journal of Guidance, Control, and Dynamics, 2009, 32(2): 643-645. 被引量:1
  • 5LIU C, LIu F, JIANG Z, et al. New method for initial orientation estimation in dynamic state using MEMS magnetometers and accelerometers [C]//Modelling, Identification & Control (ICMIC). 2012: 29-34. 被引量:1
  • 6CONRADO A. Implementation of a quaternion-based Kalman filter for human body motion track- ing using MARG sensors [D]. Monterey: Naval Postgraduate School, 2004. 被引量:1
  • 7YUN X P, BACHMANN E R, MCGHEE R B. A simplified quaternion-based algorithm for orienta- tion estimation from earth gravity and magnetic field measurements [J]. IEEE Transactions on Instrumentation and Measurement, 2008, 57(3): 638-650. 被引量:1
  • 8SABATELLI S, GALGANI M, FANUCCI L, et al. A double-stage Kalman filter for orientation tracking with an integrated processor in 9-D IMU [J]. IEEE Transactions on Instrumentation and Measurement, 2013, 62(3): 590-598. 被引量:1
  • 9BRIGANTE C M N, ABBATE N, BASILE A, et al. Towards miniaturization of a MEMS-based wearable motion capture system [J]. IEEE Transactions on Industrial Electronics, 2011, 58(8): 3234-3241. 被引量:1
  • 10蔡春龙,刘翼,刘一薇.MEMS仪表惯性组合导航系统发展现状与趋势[J].中国惯性技术学报,2009,17(5):562-567. 被引量:36

共引文献27

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部