期刊文献+

基于博弈建模的地对空防御火力分配策略选择

Ground-to-air Defense Firepower Assignment Decision Based on Game Modeling
下载PDF
导出
摘要 战场环境复杂多变,如何根据当前态势及火力资源特点,及时有效地对来袭目标进行火力分配,是防空指挥中的关键环节。针对地对空防御问题,考虑对敌方来袭目标的毁伤程度和我方武器资源消耗因素,以最大化总体毁伤概率和最小化使用武器价值为目标建立多目标优化模型。由于优化目标之间存在对武器资源的竞争,以优化目标为博弈方,以决策武器如何攻打来袭目标为策略,建立非合作博弈模型,并结合禁忌搜索技术,设计基于纳什均衡搜索的改进遗传算法(NE-IGA)进行求解。实验结果表明,与求解优化模型的基于禁忌搜索的改进遗传算法(TSGA)及基本遗传算法(GA)相比,博弈模型及其求解算法NE-IGA能够得到更优的分配方案。 For the complex and changeable environment of the battlefield,timely and effective firepower assignment to incoming targets according to the situation and characteristics of the fire resources is crucial to the air defense command.Considering the degree of damage to the incoming targets and the consumption of weapon resources in the ground-to-air defense,a multi-objective optimization model is proposed to maximize the total damage probability with minimized consumption of weapons.For the competition between the two objectives for weapon resources,a non-cooperative game model is proposed for the firepower assignment with objectives as players,and the decision to attack targets with weapons as a strategy.An improved genetic algorithm(NE-IGA)based on tabu search technology is designed to solve the Nash equilibrium.The experimental results show that,compared with the improved genetic algorithm based on tabu search(TSGA)and the basic genetic algorithm(GA)which are used for solving the optimization model,the game model and the proposed algorithm NE-IGA can bring a better assignment scheme.
作者 孙文娟 许可 宫华 SUN Wenjuan;XU Ke;GONG Hua(Shenyang Ligong University,Shenyang 110159,China;Liaoning Key Laboratory of Intelligent Optimization and Control for Ordnance Industry,Shenyang 110159,China)
出处 《沈阳理工大学学报》 CAS 2023年第5期82-87,94,共7页 Journal of Shenyang Ligong University
基金 辽宁省教育厅科学研究经费项目(LG202025,LJKZ0260) 辽宁省“兴辽英才计划”项目(XLYC2006017)。
关键词 地对空防御 火力分配 非合作博弈 纳什均衡 遗传算法 ground-to-air defense firepower assignment non-cooperative game Nash equi-librium genetic algorithm
  • 相关文献

参考文献15

二级参考文献187

共引文献112

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部