摘要
为研究双钢板混凝土组合(SC)墙的抗冲击性能,采用ABAQUS建立了SC墙在轴力与冲击耦合作用下的数值模型,并通过已有SC构件落锤冲击试验结果验证了有限元模型的适用性.基于此,首先分析了SC墙的抗冲击工作机理;其次,重点研究了钢板含钢率、轴压比等参数对构件动力响应的影响;最后给出了该类构件在轴力-冲击耦合作用下跨中最大挠度简化计算公式.结果表明:SC墙冲击全过程分为四个阶段,混凝土是构件抗冲击的主要耗能部件;轴压比会削弱构件的抗冲击性能,且当轴压比大于0.2时,影响更加明显;钢板含钢率、冲击速度、冲击质量与对拉钢筋间距对构件抗冲击性能影响较大;建议的计算公式能有效预测冲击荷载下考虑轴力影响的SC墙跨中最大挠度.
In order to study the impact resistance of double-skin steel-concrete composite(SC)wall,the numerical model under coupled axial and impact loads was established using ABAQUS software.The accuracy of the finite element modeling was validated against the test results of SC members under drop-hammer impact.Firstly,the impact-resistance mechanism of SC wall was analyzed.Then,the influences of the steel plate ratio,axial-load ratio and other parameters on dynamic responses were investigated.Finally,a simplified equation was developed to predict the maximum mid-span deflection of axial-loaded SC wall under impact load.The results show that:the whole impact process can be divided into four phases,the sandwiched concrete is the main energy-dissipation component during impact;ratio of axial compression stress to strength would weaken the impact resistance of test specimen,and the effect is more obvious when the ratio of axial compression stress to strength exceeds 0.2;steel content of steel plate,impact velocity,impact mass and spacing of tension bars have significant influences on the impact resistance;the empirical formula suggested can well predict the maximum mid-span deformation of axial-loaded SC wall under an impact load.
作者
孙继红
安国青
王蕊
SUN Ji-hong;AN Guo-qing;WANG Rui(Department of Architectural Engineering,Shanxi Institute of Economic Management,Taiyuan 030024,China;School of Civil Engineering,Taiyuan University of Technology,Taiyuan 030024,China)
出处
《兰州理工大学学报》
CAS
北大核心
2023年第4期108-116,共9页
Journal of Lanzhou University of Technology
基金
山西省自然科学基金(20210302123119)
山西省留学人员科技活动择优资助项目(20210010)。
关键词
双钢板混凝土组合墙
轴力-冲击耦合
有限元分析
挠度预测
double-skin steel-concrete composite wall
axial and impact combined load
finite element analysis
deformation prediction