期刊文献+

基于多通道特征融合的上下位关系抽取方法

Hypernymy Relationship Extraction Method Based on Multi-Channel Feature Fusion
下载PDF
导出
摘要 上下位关系抽取是知识图谱构建的关键环节,目前常用的基于模板和分布式的方法存在可移植性差、召回率低等不足。针对这些问题,提出了一种基于多通道特征融合的上下位关系抽取方法,通过预训练词嵌入、双向LSTM和依存句法树结果编码三个通道来构建模型编码器。首先,提出了上下位关系抽取整体框架,包括数据挖掘与标注模块、特征抽取模块、候选句打分模块及结果排序模块。然后,针对特征抽取模块,提出了融合句法依存关系、上下文特征以及预训练特征的自适应编码方法;针对句子打分模块,提出了包含编解码器结构的网络模型。最后,通过对准确率、召回率、查全率进行消融实验,表明所提出的模型具有较好的有效性和更好的可解释性。 Hypernymy relationship extraction is a key step in the construction of knowledge graphs.Currently,the commonly used template-based and distributed methods have shortcomings such as poor portability and low recall rate.To address these issues,a multi-channel feature fusion based hypernymy relationship extraction method is proposed,which constructs a model encoder through three channels:pre-trained word embedding,bi-directional LSTM,and dependency syntax tree result encoding.First,an overall framework for hypernymy relationship extraction is proposed,which includes data mining and annotation modules,feature extraction modules,candidate sentence scoring modules and result sorting modules.Then,for the feature extraction module,an adaptive encoding method integrating syntactic dependencies,contextual features,and pre-trained features is proposed;and for the sentence scoring module,a network model including codec structure is proposed.Finally,the ablation experiments on the accuracy rate,recall rate,etc.,indicate that the proposed model has better validity and better interpretability.
作者 靖琦东 翟值楚 周在龙 杨松柏 Jing Qidong;Zhai Zhichu;Zhou Zailong;Yang Songbai(CEC Industrial Internet Co.,Ltd.,Changsha Hunan 410000,China)
出处 《通信技术》 2023年第6期744-749,共6页 Communications Technology
关键词 上下位关系抽取 多通道特征融合 图卷积网络 依存句法树 hypernymy relationship extraction multi-channel feature fusion graph convolutional network dependency syntax tree
  • 相关文献

参考文献2

二级参考文献28

  • 1孙霞,郑庆华,王朝静,张素娟.一种基于生语料的领域词典生成方法[J].小型微型计算机系统,2005,26(6):1088-1092. 被引量:11
  • 2Boguraev B, Kennedy C. Applications of term identification technology:domain description and content characterization[J] . Natural I.anguage Engineering, 1999,5 (1) : 17-44. 被引量:1
  • 3Appeit D E. Introduction to Information Extraction[J]. AI Communications, 1999,12(3) : 161- 172. 被引量:1
  • 4Aone C, Ramos M, Rees S. A large-scale relation and event extraction system[C] //Proceedings of the 6th Applied Natural Language Processing Conference. New York;ACM Press, 2000:76-83. 被引量:1
  • 5Hearst M A. Automatic Acquisition of Hyponyms from I.arge Text Corpora[C] //14^th International Conference on Computa tional Linguistics. Nantes, France, 1992 : 539-545. 被引量:1
  • 6Yu Hong, et al. Automatic Extraction of Gene and Protein Synonyms from MEDLINE and Journal Articles[C]// Proceedings of the American Medical Informatics Association 2002 Symposium (AMIA'2002). 2002:919-923. 被引量:1
  • 7Li Wenjie, et al. A Novel Feature-based Approach to Chinese Entity Relation Extraction[C]//Proceedings of ACL-08: HLT. Columbus, USA, 2008 : 89-92. 被引量:1
  • 8Girju R, Badulescu A, Moldovan D. Learning Semantic Constraints for the Automatic Discovery of Part-Whole Relations [C]// Edmonton, Canada. Proceedings of HLT-NAACL. Edmonton, Canada, 2003 : 80-87. 被引量:1
  • 9Fleischman M, Hovy E. Offline Strategies for Online Question Answering: Answering Questions Before They Are Asked[C]// Proceedings of the 41^st Annual Meeting of the Association for Computational Linguistics. Sapporo, Japan, 2003 : 1-7. 被引量:1
  • 10Chang J T. Using Machine Learning to Extract Drug and Gene relationships from Text[D]. Stanford University, 2003. 被引量:1

共引文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部