期刊文献+

Improving surface integrity when drilling CFRPs and Ti-6Al-4V using sustainable lubricated liquid carbon dioxide 被引量:2

原文传递
导出
摘要 In the quest for decreasing fuel consumption and resulting gas emissions in the aeronautic sector,lightweight materials such as Carbon Fiber Reinforced Polymers(CFRPs)and Ti-6Al-4V alloys are being used.These materials,with excellent weight-to-strength ratios,are widely used for structural applications in aircraft manufacturing.To date,several studies have been published showing that the use of metalworking fluids(MWFs),special tool geometries,or advanced machining techniques is required to ensure a surface quality that meets aerospace component standards.Conventional MWFs pose a number of environmental and worker health hazards and also degrade the mechanical properties of CFRPs due to water absorption in the composite.Therefore,a transition to more environmentally friendly cooling/lubrication techniques that prevent moisture problems in the composite is needed.This research shows that lubricated LCO_(2) is a viable option to improve the quality of drilled CFRP and titanium aerospace components compared to dry machining,while maintaining clean work areas.The results show that the best combination of tool geometry and cooling conditions for machining both materials is drilling with Brad point drills and lubricated LCO_(2).Drilling under these conditions resulted in a 90%improvement in fiber pullout volume compared to dry machined CFRP holes.In addition,a 33% reduction in burr height and a 15% improvement in surface roughness were observed compared to dry drilling of titanium.
出处 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第7期129-146,共18页 中国航空学报(英文版)
基金 financially supported by CRYOMACH Project (INNO-20182049) by the ARRS – national science agency within research program 2-0266 (Advance manufacturing technologies for high quality and sustainable production/ Napredne izdelovalne tehnologije za visoko kakovostno in trajnostno proizvodnjo)
  • 相关文献

同被引文献10

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部