摘要
四极滤质器(Quadrupole Mass Filter,QMF)因其高灵敏度和高选择性而广泛用于质谱分析。对其操作原理的深入理解对优化其性能至关重要。基于相空间动力学方法和离子运动理论,使用离子光学仿真软件SIMION 8.2,深入研究了四极杆入口端盖与QMF电极间隙对入口边缘场及离子传输的影响。研究结果表明,端盖间隙的大小直接影响不同m/z范围内的离子传输效率。较小的间隙可以优化高m/z值的离子传输,而较大的间隙则有助于优化低m/z值的离子传输。对于质量数范围m/z 1~100 amu时,r_(0)~1.25 r_(0)的间隙大小可使离子传输效率达15.92%~25.80%,比无边缘场时提升了约2.45~3.97倍;对于质量数范围m/z 1~1000 amu时,小于0.5 r_(0)的间隙大小可使离子传输效率达12.06%~26.40%,比无边缘场时提升了约1.86~4.06倍。这项研究为调整端盖间隙以优化所需m/z值范围内的离子传输提供了理论依据,对仪器设计具有一定的参考价值。
The Quadrupole Mass Filter(QMF),known for its high sensitivity and selectivity,is extensively utilized in mass spectrometry analysis.Deep comprehension of its operational principles is crucial for performance optimization.Based on phase space dynamics methods and ion motion theory,and using the ion optics simulation software SIMION 8.2,this study delves into the effect of the gap between the quadrupole rod entrance end cap and the QMF electrodes on both the entrance fringe field and ion transmission.Research results indicate that the size of the end cap gap directly impacts the ion transmission efficiency within different m/z ranges.Smaller gaps can optimize the transmission of ions with high m/z values,while larger gaps tend to optimize the transmission of ions with low m/z values.For a mass number range of m/z 1—100 amu,a gap size between r_(0)—1.25 r_(0) can achieve ion transmission efficiencies of 15.92%—25.80%,which is approximately 2.45—3.97 times greater than when the fringe field is not taken into account.In the case of a mass number range of m/z 1—1000 amu,a gap size smaller than 0.5 r_(0) can achieve ion transmission efficiencies between 12.06%—26.40%,which is approximately 1.86—4.06 times greater than without considering the fringe field.This research offers a theoretical basis for adjusting the end cap gap in order to optimize ion transmission within the necessary m/z value range,providing considerable reference value for instrument design.
作者
杨青源
黄泽建
赵天琦
金尚钟
方向
YANG Qingyuan;HUANG Zejian;ZHAO Tianqi;JIN Shangzhong;FANG Xiang(College of Metrology and Measurement Engineering,China Jiliang University,Hangzhou,Zhejiang 310018,China;National Institute of Metrology,Center for Advanced Measurement Science,Technology Innovation Center of Mass Spectrum for State Market Regulation,Beijing 100029,China)
出处
《中国无机分析化学》
CAS
北大核心
2023年第9期1037-1046,共10页
Chinese Journal of Inorganic Analytical Chemistry
基金
国家重点研发计划项目(2016YFF0102603,2021YFF0600202)
中国科学院海洋大科学研究中心重点部署项目(COMS2020J10)。