摘要
针对农用拖拉机在未知扰动影响下的路径跟踪控制问题,本文提出了基于自适应二阶滑模和扰动观测技术的路径跟踪控制策略.首先,建立含有未知扰动项的路径跟踪偏差模型,通过利用自适应控制和改进的加幂积分技术,构造自适应二阶滑模路径跟踪控制方法,该控制方法削弱了滑模控制中存在的抖振影响.其次,为了解决大扰动下控制增益调整过度的问题,通过将鲁棒精确微分器和自适应二阶滑模控制结合,构造复合的路径跟踪控制方法.严格的Lyapunov分析表明横向偏差和航向偏差均在有限时间内稳定到原点.最后,仿真结果验证了本文设计的制导方法能够保证农用拖拉机快速且稳定地跟踪上任意弯曲的参考路径.
In this paper,the path tracking control strategies are proposed based on adaptive second-order sliding mode control(SOSM)and disturbance observer techniques to solve the path tracking problem of agricultural tractors under the influence of unknown disturbances.First of all,a path tracking offset model with unknown disturbance is established,and an adaptive SOSM path tracking control method is constructed by using adaptive control and the revamped adding a power integrator techniques,which reduces chattering effects existing in sliding mode control.To solve the problem of excessive adjustment of control gains under large disturbances,then,by combining the robust exact differentiator with the derived adaptive SOSM controller,the composite path tracking control method is also constructed.The strict Lyapunov analysis confirms that the lateral deviation and the heading deviation can be finite-time stabilized to the origin.Finally,the simulation results confirm that the designed guidance approach can ensure that the agricultural tractor can track the arbitrary reference path quickly and stably.
作者
丁晨
魏新华
梅珂琪
DING Chen;WEI Xin-hua;MEI Ke-qi(School of Agricultural Engineering,Jiangsu University,Zhenjiang Jiangsu 212013,China;School of Electrical and Information Engineering,Jiangsu University,Zhenjiang Jiangsu 212013,China;College of Information Engineering,Fuyang Normal University,Fuyang Anhui 236041,China)
出处
《控制理论与应用》
EI
CAS
CSCD
北大核心
2023年第7期1287-1295,共9页
Control Theory & Applications
基金
国家重点研发计划项目(2019YFB1312302)
江苏省重点研究开发计划项目(BE2020327,BE2021313)
安徽省自然科学基金项目(2008085QA15,KJ2021A1252)
江苏省研究生科研创新计划项目(KYCX223676)资助。
关键词
路径跟踪
二阶滑模
自适应控制
农用拖拉机
鲁棒精确微分器
有限时间稳定性
path tracking
second-order sliding mode
adaptive control
agricultural tractors
robust exact differentiator
finite-time stability