摘要
近年来微气泡减阻技术应用于水面舰船的相关研究取得重要进展,许多舰船已经采用了此类技术。然而该技术在潜航器上的应用整体上仍处于理论分析和试验测试阶段。以回转体潜航器简化模型为研究对象,利用多孔介质来简化喷气小孔,并结合不可压缩水体和可压缩理想气体的流体体积(VOF)方法,建立了Realizableε-k湍流计算模式。通过拖曳试验验证了多孔介质等效喷气小孔的合理性和数值模式的准确性,结合试验和数值结果探究了微气泡减阻技术对潜航器航行阻力的影响。数值结果显示,气泡对潜航器尾流低速区的改变使尾部压力分布产生变化从而导致压差阻力增高。同时气泡可以显著降低其覆盖区域的黏性阻力。并且随着来流速度的提高,气泡覆盖范围扩大,黏性减阻率持续增加。进一步地,建立了加长改进模型,数值模拟结果表明,微气泡减阻技术不仅能大幅减小黏性阻力,还能有效减小模型总阻力。
In recent years,important progresses have been made in the research related to the application of micro-bubble drag reduction technology to ships,and many kinds of ships have adopted such technology.However,the application of this technology to underwater vehicles is still at the stage of theoretical analysis and experimental testing.In this research,the simplified models of rotary underwater vehicle are studied,and the Realizableε⁃k turbulence model is established with volume of fluid(VOF)method combining in-compressible water and compressible ideal gas.The validity of using porous media to equate the small air holes and the accuracy of the numerical model are verified by the dragging experiments,and then the experimental and numerical results are used to investigate the effect of micro-bubble drag reduction technology on underwater vehicles resistance.Numerical results show that the change of the wake pressure distribution due to the influence of bubbles on the low velocity region at the wake flow zone results in a higher differential pressure resistance.At the same time,the viscous resistance in the covered area by the bubbles is significantly reduced.And the bubble coverage area expanding with the increased incoming velocity makes the viscous force reduction rate increased continuously.Further,an elongated modified model is established and the numerical simulation results show that the micro-bubble drag reduction technique could not only significantly reduce the viscous drag but also effectively reduce the total drag of the model.
作者
詹杰民
陆尚平
李熠华
李雨田
胡文清
ZHAN Jiemin;LU Shangping;LI Yihua;LI Yutian;HU Wenqing(Department of Applied Mechanics and Engineering,Sun Yat-sen University,Guangzhou 510275,China)
出处
《海洋工程》
CSCD
北大核心
2023年第4期1-11,共11页
The Ocean Engineering
基金
国家重点基金资助项目(6140206040301)
深圳市科技计划资助项目(JCYJ20220818102012024)。