期刊文献+

基于多尺度伪影生成对抗网络的磁共振成像脑肿瘤分割方法 被引量:1

Magnetic Resonance Imaging Brain Tumor Segmentation Using Multiscale Ghost Generative Adversarial Network
下载PDF
导出
摘要 针对磁共振成像脑肿瘤分割存在的肿瘤空间信息变化大与精细标注样本数量少的问题,提出一种基于多尺度伪影生成对抗网络的脑肿瘤影像分割方法。该方法采用三维U-Net模型来获取脑肿瘤分割结果并充当生成器,引入三维PatchGAN作为判别器来评判U-Net输出的脑肿瘤结果与真值标签,通过对抗学习方式来进行模型训练。为提升脑肿瘤分割效果,在生成器编码阶段引入伪影模块,使得在卷积过程中能够捕获到更丰富的深度特征而提升生成器的脑肿瘤生成结果;同时,在解码过程中采用多尺度特征融合方式来有效整合脑肿瘤的浅层信息与深层信息,并在对抗学习中进一步提升分割性能。在公开的BraTS2019-2020数据集上对该方法进行了评估,实验结果验证了所提出方法在脑肿瘤分割任务中的有效性,在两个验证集上获得的全肿瘤、核心肿瘤和增强肿瘤分割Dice值分别为0.902/0.903、0.836/0.826和0.77/0.782。 Brain tumors are abnormal cells that grow in the brain or skull,and malignant brain tumors always cause great danger to the life and health of patients.Magnetic Resonance Imaging(MRI) can produce high-quality brain images without damage and skull artifacts,and it is currently one of the main technologies for the diagnosis and treatment of brain tumors.Meanwhile,the automatic segmentation of MRI brain tumor lesion regions is of great significance for the clinical diagnosis,surgical planning,and postoperative evaluation of brain tumor patients.However,due to the complexity and diversity of brain tumor images and the difficulty in obtaining the large-scale high-quality brain tumor segmentation dataset,it is still a difficult task to achieve high-precision automatic segmentation of MRI brain tumors.In recent years,with the breakthrough development of deep learning in computer vision tasks,it has also been successfully applied in the field of medical image analysis,and has achieved significant performance improvement in a number of medical image analysis tasks.Among them,U-Net,with its simple architecture and high performance,has become a mainstream model to solve a series of medical image segmentation tasks,including brain tumor segmentation.To this end,according to the advantages of the U-Net network architecture,focusing on issues of large variation of tumor spatial information and small number of finely labeled samples,a novel brain tumor image segmentation method,called Multi-scale Ghost Generation Adversarial Network(MG2AN),is proposed by combining U-Net with unsupervised generative adversarial network.MG2AN leverages the 3D U-Net model as a generator to obtain brain tumor segmentation results,and introduces 3D PatchGAN corresponding to multi-scale feature information of the generator as a discriminator to judge brain tumor segmentation results and ground truth,and the whole model is trained by adversarial learning.To improve the MRI brain tumor segmentation effect,a ghost module is introduced in the encoding st
作者 张睦卿 韩雨童 陈柏年 张建新 ZHANG Muqing;HAN Yutong;CHEN Bonian;ZHANG Jianxin(School of Computer Science and Engineering,Dalian Minzu University,Dalian 116600,China;Institute of Machine Intelligence and Biocomputing,Dalian Minzu University,Dalian 116600,China)
出处 《光子学报》 EI CAS CSCD 北大核心 2023年第8期194-205,共12页 Acta Photonica Sinica
基金 国家自然科学基金(No.61972062) 辽宁省应用基础研究计划(No.2023JH2/101300191)。
关键词 脑肿瘤分割 三维U-Net 生成对抗网络 伪影特征 多尺度特征融合 Brain tumor segmentation 3D U-Net Generative adversarial network Ghost feature Multi-scale feature fusion
  • 相关文献

参考文献5

二级参考文献24

  • 1ULLAH H,MARIAMPILLAI A,IKRAM M,et al. Can temporal analysis of optical coherence tomography statistics report on dextrorotatory-glucose levels in blood?[J].Laser Physics,2011,21(11):1962-1971. 被引量:1
  • 2PAUL T U,BANDHYOPADHYAY S K. Segmentation of brain tumor from brain MRI images reintroducing K-means with advanced dual localization method[J].International Journal of Engineering Research and Applications,2012,2(3):226-231. 被引量:1
  • 3WANG Xiao-feng,HUANG De-shuang,XU Huan. An efficient local Chan-Vese model for image segmentation[J].Pattern Recognition,2010,43(3):603-618. 被引量:1
  • 4CONTE D,FOGGIA P,TUFANO F,et al. An enhanced level set algorithm for wrist bone segmentation[J].Image Segmentation,InTech,2011,27(4):293-308. 被引量:1
  • 5ATTIQUE M,GILANIE G,MeEHMOOD M S,et al. Colorization and automated segmentation of human T2 MR brain images for characterization of soft tissues[J].PLoS One,2012,7(3):616-628. 被引量:1
  • 6HUANG Yu,DMOCHOWSKI J P,SU Yu-zhou,et al. Automated MRI segmentation for individualized modeling of current flow in the human head[J].Journal of Neural Engineering,2013,10(6):66004-66016. 被引量:1
  • 7FOUQUIER G,ATIF J,BLOCH I. Sequential model-based segmentation and recognition of image structures driven by visual features and spatial relations[J].Computer Vision and Image Understanding,2012,116(1):146-165. 被引量:1
  • 8ULLAH H,ATIF M,FIRDOUS S,et al. Femtosecond light distribution at skin and liver of rats:analysis for use in optical diagnostics[J].Laser Physics Letters,2010,7(12):889-903. 被引量:1
  • 9HAEGELEN C,COUP P,FONOV V,et al. Automated segmentation of basal ganglia and deep brain structures in MRI of Parkinson’s disease[J].International Journal of Computer Assisted Radiology and Surgery,2013,8(1):99-110. 被引量:1
  • 10王亭,王向阳.基于纹理测度与自适应阈值的FCM图像分割算法[J].小型微型计算机系统,2010,31(6):1209-1212. 被引量:4

共引文献48

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部