摘要
Photo-assisted SCR(PSCR) offers a potential solution for removal of NO at room temperature. MnTiO_(x)as PSCR catalyst exhibits superior performance with NO removal of 100% at the room temperature. Electron paramagnetic resonance(EPR) analysis revealed the presence of numerous oxygen vacancies on MnTiO_(x). Optical carrier density functional theory(DFT) calculations showed that the threedimensional orbital hybridization of Mn and Ti is significantly enhanced under light irradiation. The MnTiO_(x)catalyst exhibited excellent electron–hole separation ability, which can adsorbe NH_(3)and dissociate to form NH_(2)fragments and H atoms. In-situ diffuse reflectance infrared fourier-transform spectroscopy(DRIFTS) indicated that the optical carrier enhanced NH_(3)adsorption on MnTiO_(x), which makes it possess excellent PSCR activity. This work provided an additional strategy to NO removal with PSCR catalysts and showed potential for use in photocatalysis.
基金
supported by Science and Technology Innovation Talents Program of Bingtuan (No.2019CB025)
Major Scientific and Technological Project of Bingtuan (No.2018AA002)
Project of Regional Innovation in Bingtuan (No.2021BB005)。