摘要
随着互联网的发展,景区的评论数据成为人们了解景区状况的主要参考方式之一。本文通过采用Python中的requests库进行爬虫代码编写,对携程网站上海迪士尼度假区的游客评论进行爬取、分析,并利用TF-IDF算法、朴素贝叶斯模型,得出用户对于该景区的认知形象的了解程度和情感形象的认知程度,发现上海迪士尼度假区目前存在门票价格高、排队时间长、餐饮设施欠缺、工作人员服务态度差等问题,并据此提出相应的优化建议,以供参考。
With the development of the Internet,the review data of scenic spots become one of the main reference ways for people to understand the status of scenic spots.In this paper,by using the requests library in Python to write the crawler code,we crawl and analyze the visitors’comments of Shanghai Disney Resort on the travel website of Xiecheng,and use the TF-IDF algorithm and the Naive Bayes Model to find out users’knowledge of the cognitive image of the scenic spot and their cognition of the emotional image,and wefind that there are problems such as high ticket price,long queuing time,lack of dining facilities,poor staffservice attitudes,etc.In this paper,we put forward corresponding suggestions for optimization as a reference.
作者
杨再河
郭桂容
YANG Zaihe;GUO Guirong(Guizhou University of Commerce Guiyang,Guizhou 550014)
出处
《商展经济》
2023年第15期68-71,共4页
Trade Fair Economy