期刊文献+

稠密自适应生成对抗网络的爨体字风格迁移模型 被引量:2

Cuan Font Generation Model of Dense Adaptive Generation Adversarial Network
下载PDF
导出
摘要 爨体字作为典型的衬线字体,不同于黑体、微软雅黑、等线这些非衬线字体,其字形结构十分多样.为了防止爨体字在生成过程中笔画弯折处出现伪影和模糊的现象,提出一种基于稠密自适应生成对抗网络的爨体字风格迁移模型.首先,生成器通过稠密自适应卷积块更加充分地提取风格特征和内容特征;然后,像素判别器对真实图片和生成图片进行分辨;再采用对抗损失、迁移损失、梯度损失和边缘损失对生成网络进行参数调节;最后,将自行采集的爨体字数据集作为训练集送入模型进行训练.实验结果证明,所提模型能够有效地学习到风格特征,达到更好的生成效果;其生成结果在字形大小保持上优于Zi-to-zi模型,在笔画细节特征的保留上优于StarGANv2以及CycleGAN模型,并在SSIM和L1 loss指标上得到了验证. As a typical serif font,Cuan font is different from the sans serif fonts such as“Heiti”,"Microsoft"“Yahei”and“Isoline”,and its glyph structure is very diverse.In order to overcome the phenomenon of arti-facts and blurring at the bends of the strokes in the generation process of Cuan fonts,a style transfer model of Cuan fonts based on a dense adaptive generation adversarial network is proposed.Firstly,the generator extracts style features and content features more fully through dense adaptive convolution blocks.Secondly,the pixel discriminator distinguishes the real picture from the generated picture.Thirdly,use adversarial loss,migration loss,gradient loss and edge loss to adjust the parameters of the generation network.Finally,the self-collected Cuan font data set is used as a training set and sent to the model for training.The experimental results prove that the style transfer model of Cuan font can effectively learn style features to achieve better generation effect.The generated results are better than the Zi-to-zi model in terms of font size retention,and better than the StarGANv2 and CycleGAN models in terms of the retention of stroke detail features,and are verified on the SSIM and L1 loss indicators.
作者 姚伟健 赵征鹏 普园媛 徐丹 钱文华 吴昊 Yao Weijian;Zhao Zhengpeng;Pu Yuanyuan;Xu Dan;Qian Wenhua;Wu Hao(School of Information Science and Engineering,Yunnan University,Kunming 650504;Internet of Things Technology and Application Key Laboratory of Universities in Yunnan,Kunming 650504)
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2023年第6期915-924,共10页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(61163019,61271361,61761046,U1802271,61662087,62061049) 云南省科技厅项目(2014FA021,2018FB100) 云南省科技厅应用基础研究计划重点项目(202001BB050043,2019FA044) 云南省重大科技专项子项(202002AD080001) 云南省中青年学术技术带头人后备人才(2019HB121).
关键词 爨体字 衬线字体 风格迁移 生成对抗网络 稠密自适应卷积块 边缘损失 Cuan font serif font style transfer generative adversarial network dense adaptive convolution block edge loss
  • 相关文献

参考文献3

二级参考文献27

共引文献17

同被引文献4

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部