期刊文献+

基于棒状像素的前景障碍物识别算法

Foreground obstacle recognition algorithm based on Stixel
下载PDF
导出
摘要 障碍物分类是智能交通应用的核心功能。本文提出了一种探测和识别道路场景下车辆与行人的算法。首先,建立棒状像素(Stixel)并由图像坐标转换至世界坐标,投影生成鸟瞰图;然后,借助聚类算法,得到原图像中待识别区域;之后,提取灰度稠密尺度不变特征变换(gray-DSIFT)特征并利用费歇尔向量(FV)编码;最后,选用随机森林(RF)分类器区分前向车辆与行人。实验结果表明:提出的方法能够有效地区分前景障碍物中出车辆与行人,提高了前期探测障碍物的效率。 Classification of obstacles is a core function of intelligent transportation applications.An algorithm for detecting and identifying vehicles and pedestrians in road scenarios is proposed.Firstly,Stixels is established and image coordinates are converted to world coordinates and a bird’s-eye view is generated by projection.With the help of the clustering algorithm,the region to be identified in the original image is obtained.Then,gray-dense scale invariant feature transform(gray-DSIFT)features are extracted and Fisher vector(FV)is used for coding.A random forest(RF)classifier is used to distinguish forward vehicles and pedestrians.The experimental results show that the proposed method can effectively distinguish vehicles and pedestrians in the foreground obstacles,the efficiency of early detection of obstacle is improved.
作者 胡福志 权悦 国海 张平娟 HU Fuzhi;QUAN Yue;GUO Hai;ZHANG Pingjuan(School of Electrical and Electronic Engineering,Anhui Science and Technology University,Bengbu 233000,China)
出处 《传感器与微系统》 CSCD 北大核心 2023年第8期161-164,共4页 Transducer and Microsystem Technologies
基金 安徽省高等学校科研项目(2022AH040234)。
关键词 棒状像素 障碍物分类 灰度稠密尺度不变特征变换 费歇尔向量 Stixel obstacle classification gray-dense scale invariant feature transform(gray-DSIFT) Fisher vector(FV)
  • 相关文献

参考文献6

二级参考文献51

  • 1冷雪飞,刘建业,熊智.基于分支特征点的导航用实时图像匹配算法[J].自动化学报,2007,33(7):678-682. 被引量:33
  • 2WANG C H, YAN SH CH, ZHANG L, et al.Multi-label sparse coding for automatic imageannotation[Cj//CVPR 2009. IEEE Conference onComputer Vision and Pattern Recognition, 2009.IEEE,2009: 1643-1650. 被引量:1
  • 3CHIANG C C, Interactive tool for image annotationusing a semi-supervised and hierarchical approach[J]. Computer Standards & Interfaces, 2013,35(1) : 50-58. 被引量:1
  • 4HU J W,LAM K M. An efficient two-stage frameworkfor image annotation [J]. Pattern Recognition,2013,46(3): 936-947. 被引量:1
  • 5JEON J, LAVRENKO V,MANMATHA R.Automatic image annotation and retrieval usingcross-media relevance models [C]//Proceedings ofthe 26th annual international ACM SIGIR conferenceon Research and development in informaionretrieval. ACM, 2003 : 119-126. 被引量:1
  • 6KE X, LI S, CAO D. A two-level model forautomatic image annotation [J]. Multimedia Toolsand Applications, 2012. 61(1): 195-212. 被引量:1
  • 7LI R, LU J J,ZHANG Y F, et al. DynamicAdaboost learning with feature selection based onparallel genetic algorithm for image annotation [J],Knowledge-Based Systems, 2010,23(3) : 195-201. 被引量:1
  • 8YOON Y,KIM Y H. Geometricity of genetic operatorsfor real-coded representation [J ]. Applied Mathematicsand Computation, 2013,219(23): 10915-10927. 被引量:1
  • 9SHI J, MALIK J. Normalized cuts and imagesegmentation [ J ]. IEEE Transactions on PatternAnalysis and Machine Intelligence,2000,22(8):888-905. 被引量:1
  • 10ZITOVA B, FLUSSER J. Image registration methods: a survey[J]. Image and Vision Computing,2003, 21 (11) : 9772-1000. 被引量:1

共引文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部