期刊文献+

社交媒体计量学视角下科学文献提及模式与规律研究

Research on the Mention Laws and Modes of Scientific Literature from a Social Mediametrics Perspective
原文传递
导出
摘要 [目的/意义]社交媒体计量学是在以社交媒体为场景的网络环境下呼之欲出的计量学分支学科,围绕社交媒体这一新的信息载体,研究社交媒体用户之间及其与信息的交互特征与规律,揭示网络信息在社交媒体层面的分布规律与传播效果,在理论和实践上具有重要的研究意义。[方法/过程]以受众广泛的社交媒体Twitter为例,从Twitter提及基本特征出发,对9476篇文献信息以及对应的1474898篇推文和451567条用户信息进行数据分析,揭示Twitter提及特征、提及行为规律和数据累积模式。[结果/结论]顶尖期刊的Twitter提及覆盖率更高,与通用学术交流平台存在相似的国家和地区分布特征;提及用户粉丝量分布呈明显的帕累托效应,且用户粉丝量与分享型提及、交流型提及的占比正相关,与支持型提及负相关;Twitter提及往往发生在正式发表之前,提及半衰期为6.02天,论文在出版后的第7天开始长期提及持续性趋于平稳。 [Purpose/significance]As a sub-discipline of measurement in the network environment with social media as the scene,social mediametrics focuses on social media as a new information carrier.It studies the characteristics and laws of information interaction among social media users,and then reveals the distribution law and dissemination effect of network information at the social media level.This has significant research value in theory and practice.[Method/process]This study takes Twitter,a widelyused social media platform,as an example,and uses the Twitter API as a data source to analyze 9476 academic publications.The study also analyzes the corresponding 1474898 tweets and 451567 user messages with the help of various metrics in order to reveal Twitter mention characteristics,mention behavior patterns and data accumulation patterns.[Result/conclusion]The results show that the mentions of top academic journals on Twitter have a wide reach and share similar national and regional distribution characteristics as universal scholarly communication platforms.The distribution of followers of users who make mentions shows a significant Pareto effect.User followers are positively correlated with the proportion of sharing mentions and communication mentions,and negatively correlated with support mentions.Twitter mentions tend to occur before formal publication,with a mention half-life of 6.02 days,and long-term mention persistence levels off from day 7 onwards after publication.Moreover,the paper’s long-term mention persistence tends to level off from the 7th day after publication.
出处 《情报理论与实践》 CSSCI 北大核心 2023年第8期1-9,共9页 Information Studies:Theory & Application
基金 国家社会科学基金重大项目“构建中国话语权的评价科学理论、方法与应用体系研究”的成果,项目编号:18ZDA325。
关键词 社交媒体计量学 文献被提及 提及规律 提及模式 Twittter social mediametrics literature mentioned mention laws mention mode Twitter
  • 相关文献

参考文献8

二级参考文献31

  • 1文武商.有美洛特卡定律的几个问题[J].情报科学,1985,6(6):16-22. 被引量:22
  • 2华红莲,潘玉君.可持续发展评价的方法论之比较[J].云南师范大学学报(哲学社会科学版),2005,37(5):62-65. 被引量:4
  • 3赵宪章,邓三鸿.2000-2004年中国文学期刊影响力报告[J].东南大学学报(哲学社会科学版),2006,8(2):102-108. 被引量:9
  • 4中国社会科学研究评价中心.中文社会科学引文索引.http://cssci.nju.edu.cn/. 被引量:3
  • 5何国光.文献计量学导论[M].台北:三民书局股份有限公司,1994. 被引量:1
  • 6Lotka, A. J.. The frequency distribution oi scientitic productivity, Journal of the Washington Academy of Science, 1926, 16(2), 317--323. 被引量:1
  • 7Coile, R.C.. Lotka's frequency distribution of scientific productivity, Journal of the American Society for Information Science, 1977, 28(6), 366--370. 被引量:1
  • 8Vlachy, J.. Frequency distribution of scientific performance. a bibliography oi Lotka's Law and related phenomena, scientometrics, 1978, (1), 109--130. 被引量:1
  • 9Price, D. de S., Little science, big sciency, Columbia University, New York, 1963. 被引量:1
  • 10PAO, M.L., Lotka's Law. A testing procedure, Information processing & man- agement, 1985, 21, 4, 305--320. 被引量:1

共引文献394

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部