期刊文献+

基于XGBoost算法的机器学习模型在早期预测重症急性胰腺炎中的应用 被引量:1

Application of machine learning model based on XGBoost algorithm in early prediction of patients with acute severe pancreatitis
原文传递
导出
摘要 目的基于极端梯度提升(XGBoost)算法建立重症急性胰腺炎(SAP)早期预测机器学习模型,并探讨其预测效能。方法采用回顾性队列研究方法,选择2020年1月1日至2021年12月31日苏州大学附属第一医院、苏州大学附属第二医院及苏州大学附属常熟医院收治的急性胰腺炎(AP)患者,根据病历系统与影像系统收集患者的人口学信息、病因、既往史及入院48 h内临床指标和影像学资料,并计算改良CT严重指数评分(MCTSI)、Ranson评分、急性胰腺炎严重程度床旁指数(BISAP)及急性胰腺炎风险评分(SABP)。将苏州大学附属第一医院及苏州大学附属常熟医院的数据集按照8:2随机分为训练集和验证集,基于XGBoost算法,在采用五折交叉验证、损失函数进行超参数调整的基础上构建SAP预测模型。将苏州大学附属第二医院的数据集作为独立的测试集,通过受试者工作特征曲线(ROC曲线)评价XGBoost模型的预测效能,并与传统AP相关病情严重程度评分进行比较;同时对特征变量进行重要性排序,采用沙普利加和解释法(SHAP)对模型进行可视化解释。结果最终共纳入1183例AP患者,其中129例(10.9%)发生SAP。苏州大学附属第一医院和苏州大学附属常熟医院患者中,训练集786例,验证集197例;苏州大学附属第二医院的200例患者作为测试集。3组数据集分析均显示,进展为SAP的患者存在呼吸功能异常、凝血功能异常、肝肾功能异常、血脂代谢异常等病理表现。基于XGBoost算法构建SAP预测模型;ROC曲线分析显示,该模型预测SAP的准确度达到0.830,ROC曲线下面积(AUC)为0.927,较MCTSI、Ranson、BISAP、SABP等传统评分系统明显提高(准确度分别为0.610、0.690、0.763、0.625,AUC分别为0.689、0.631、0.875、0.770)。基于XGBoost模型的特征变量重要性分析显示,模型中权重排名前10位的指标依次为胸腔积液(0.119)、白蛋白(Alb,0.049)、三酰甘油(TG,0.036)、Ca2+(0. Objective To establish a machine learning model based on extreme gradient boosting(XGBoost)algorithm for early prediction of severe acute pancreatitis(SAP),and explore its predictive efficiency.Methods A retrospective cohort study was conducted.The patients with acute pancreatitis(AP)who admitted to the First Affiliated Hospital of Soochow University,the Second Affiliated Hospital of Soochow University and Changshu Hospital Affiliated to Soochow University from January 1,2020 to December 31,2021 were enrolled.Demography information,etiology,past history,and clinical indicators and imaging data within 48 hours of admission were collected according to the medical record system and image system,and the modified CT severity index(MCTSI),Ranson score,bedside index for severity in acute pancreatitis(BISAP)and acute pancreatitis risk score(SABP)were calculated.The data sets of the First Affiliated Hospital of Soochow University and Changshu Hospital Affiliated to Soochow University were randomly divided into training set and validation set according to 8:2.Based on XGBoost algorithm,the SAP prediction model was constructed on the basis of hyperparameter adjustment by 5-fold cross validation and loss function.The data set of the Second Affiliated Hospital of Soochow University was served as independent test set.The predictive efficacy of the XGBoost model was evaluated by drawing the receiver operator characteristic curve(ROC curve),and compared it with the traditional AP related severity score;variable importance ranking diagram and Shapley additive explanation(SHAP)diagram were drawn to visually explain the model.Results A total of 1183 AP patients were enrolled finally,of which 129(10.9%)developed SAP.Among the patients from the First Affiliated Hospital of Soochow University and Changshu Hospital Affiliated to Soochow University,there were 786 patients in the training set and 197 in the validation set;200 patients from the Second Affiliated Hospital of Soochow University were used as the test set.Analysis of all thre
作者 高欣 林嘉希 吴爱荣 顾慧媛 刘晓琳 殷民月 周芝润 张儒发 许春芳 朱锦舟 Gao Xin;Lin Jiaxi;Wu Airong;Gu Huiyuan;Liu Xiaolin;Yin Minyue;Zhou Zhirun;Zhang Rufa;Xu Chunfang;Zhu Jinzhou(Department of Gastroenterology,the First Affiliated Hospital of Soochow University,Suzhou Digestive Disease Clinical Medical Center,Suzhou 215006,Jiangsu,China;Department of Obstetrics and Gynecology,the Second Affiliated Hospital of Soochow University,Suzhou 215000,Jiangsu,China;Department of Gastroenterology,Changshu Hospital Affiliated to Soochow University,Suzhou 215500,Jiangsu,China)
出处 《中华危重病急救医学》 CAS CSCD 北大核心 2023年第4期421-426,共6页 Chinese Critical Care Medicine
基金 国家自然科学基金(82000540) 江苏省苏州市科技计划项目(SKY2021038) 江苏省苏州市"科教兴卫"青年科技项目(KJXW2019001)。
关键词 极端梯度提升算法 机器学习 重症急性胰腺炎 预测模型 XGBoost algorithm Machine learning Severe acute pancreatitis Predictive model
  • 相关文献

参考文献5

二级参考文献30

共引文献1284

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部