期刊文献+

多源多特征集成的南美洲典型地区湿地制图 被引量:1

Wetlands mapping in typical regions of South America with multi-source and multi-feature integratio
原文传递
导出
摘要 南美洲湿地面积广且类型多样,但湿地制图相关研究匮乏,通过遥感手段可为南美洲全域湿地制图提供科学技术支撑。本研究依托GEE (Google Earth Engine)平台面向南美洲湿地提出一种多源多特征集成的湿地制图方法。研究选取南美洲典型湿地地区为研究区,首先利用已有土地覆盖数据集提出一种有效的湿地样本采集流程以保证样本质量,其次结合哨兵1号、哨兵2号和SRTM数据构建多源特征集合,并基于随机森林的递归特征消除算法(RF_RFE)进行特征优选,构建不同特征组合方案对比多源特征对湿地分类结果的影响,最后采用随机森林算法对研究区湿地进行分类提取。研究结果表明,设计样本采集方案可有效提高样本质量,多源特征集合能够提升湿地分类精度,特征优选能够减少特征冗余并提升分类精度。研究区分类总体精度为85.62%,Kappa系数为0.8333,其中湿地类别的精度最低为69.85%,最高为95.18%。 Wetlands play an important role in maintaining ecological balance,conserving water resources,recharging groundwater,and controlling soil erosion.They are often called the“kidneys of the earth”because they help purify water by filtering out pollutants and sediments.South America has a vast area of wetlands,as well as a variety of wetlands types.While most of these wetlands were conserved in a relatively good condition until a few decades ago,pressures brought about by land use and climate change have threatened their integrity in recent years.However,no complete and uniform wetland map has provided adequate information on the location,distribution,size,and changing status of wetlands in South America.Remote sensing has been an effective tool for characterizing,mapping,and monitoring the complexity and dynamics of large areas of wetlands.Although fine wetland mapping may be done by combining data from many sources,the following two issues persist.On the one hand,given the complicated temporal dynamics and spectral heterogeneity of wetlands,large-scale wetland mapping remains a challenging task.On the other hand,supervised classification is a widely used technique for multi-category wetland mapping.However,selecting training samples is time consuming and labor intensive.Moreover,finer and more precise wetland information is currently unavailable for reference.In the study,we selected four study areas of typical wetlands in South America.First,an effective wetland sample collection process was proposed by using the existing land cover dataset to ensure the sample quality.Second,a multi-source feature set was constructed by combining Sentinel-1,Sentinel-2,and SRTM data.Then,feature selection is carried out on the basis of the random forest recursive feature elimination method(RF_RFE).We constructed a multi-feature combination scheme to compare the influence of multi-source features on wetlands classification.Finally,the random forest algorithm is used to classify wetlands in the study area.The research results sho
作者 黄玉玲 杨刚 孙伟伟 朱琳 黄可 孟祥超 HUANG Yuling;YANG Gang;SUN Weiwei;ZHU Lin;HUANG Ke;MENG Xiangchao(Department of Geography and Spatial Information Techniques,Ningbo University,Ningbo 315211,China;Faculty of Electrical Engineering and Computer Science,Ningbo University,Ningbo 315211,China)
出处 《遥感学报》 EI CSCD 北大核心 2023年第6期1300-1319,共20页 NATIONAL REMOTE SENSING BULLETIN
基金 国家自然科学基金(编号:42122009,41971296) 宁波市科技创新2025重大专项(编号:2021Z107) 宁波市公益项目(编号:2021S089) 中国博士后科学基金(编号:2020M670440) 浙江省省属高校基本科研业务费专项资金资助(编号:SJLZ2022002) 浙江省自然科学基金(编号:LR19D010001)。
关键词 遥感 哨兵1号(Sentinel-1) 哨兵2号(Sentinel-2) Google Earth Engine 湿地分类 特征选择 南美洲 remote sensing Sentinel-1 Sentinel-2 Google Earth Engine wetlands classification feature selection South America
  • 相关文献

参考文献9

二级参考文献103

  • 1刘红玉,吕宪国,张世奎.三江平原流域湿地景观多样性及其50年变化研究[J].生态学报,2004,24(7):1472-1479. 被引量:88
  • 2惠文华.基于支持向量机的遥感图像分类方法[J].地球科学与环境学报,2006,28(2):93-95. 被引量:46
  • 3Rundquist D, Lawson M, Queen L, et al. The Relationship Between the Timing of Summer-Season Rainfall Events and Lake-Surface Area[J]. Water Resources Bulletin, 1987, 23(3): 493-508. 被引量:1
  • 4Boland D H P. Trophic Classification of Lakes Using Landsat-1(ERTS-1) Multispectral Scanner Data[A]. US EPA, Office of Research and Development, Corvallis Environmental Research Laboratory[A], Corvallis, Oregon, 1976. 被引量:1
  • 5McFeeters S K. The Use of Normalized Difference Water Index(NDWI) in the Delineation of Open Water Features[J]. International Journal of Remote Sensing, 1996, 17(7): 1425-1432. 被引量:1
  • 6Jensen J R. Introductory Digital Image Processing: A Remote Sensing Perspective[M]. NJ: Prentice Hall Logicon Geodynamics, Inc., 1996. 被引量:1
  • 7Rouse J W, Haas R H, Schell J A, et al. Monitoring Vegetation Systems in the Great Plains with ERTS[A]. Third ERTS Symposium[C], 1973, NASA SP-351, 1: 309-317. 被引量:1
  • 8Gao B C. NDWI-A Normalized Difference Water Index for Remote Sensing of Vegetation Liquid Water from Space[J]. Remote Sensing of Environment, 1996, 58: 257-266. 被引量:1
  • 9Wilson E H, Sader S A. Detection of Forest Harvest Type Using Multiple Dates of Landsat TM Imagery[J]. Remote Sensing of Environment, 2002, 80: 385-396. 被引量:1
  • 10Leo Breiman.Random Forests[J]. Machine Learning . 2001 (1) 被引量:13

共引文献1897

同被引文献18

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部