期刊文献+

基于KUZ-RAM修正模型的矿山爆破精度评估研究

Research on mine blasting accuracy evaluation based on KUZ-RAM modified model
下载PDF
导出
摘要 为解决原KUZ-RAM模型在预测中容易出现高估爆破块度及低估其不均匀指数问题,首先采用延伸应用的面积测量法获得块度大小,然后以面积测量法的结果为对比标准,通过对原KUZ-RAM模型增加平均块度和不均匀指数的修正系数进行优化;最后通过实例验证修正后模型对于平均块度及不均匀指数的预测准确性,进而改善原有经验公式中没有考虑岩性现状等问题。研究结果表明:修正后KUZ-RAM模型能够利用岩石系数将平均块度与不均匀指数之间建立联系,且该模型对于爆破效果的评价准确性较高,实用性较强。研究结果可为提高评估露天矿山爆破结果准确性提供一定参考和借鉴。 In order to solve the problem that the original KUZ-RAM model is prone to overestimate the blast block size and underestimate the non-uniformity index in the prediction,the block size was firstly obtained by using the extended application of the area measurement method,and then the results of the area measurement method were used as the comparison standard,and the correction coefficients of the average block size and the non-uniformity index were added to the original KUZ-RAM model.Finally,the accuracy of the modified model in predicting the average block size and non-uniformity index was verified by example,and then improve the original empirical formula does not take into account the current state of lithology and other problems The results show that the modified KUZ-RAM model is able to establish a link between average block size and non-uniformity index using rock coefficients,and the model is more accurate and practical for evaluating blasting effects.The research results can provide some reference and reference for improving the accuracy of evaluating blasting results in open pit mines.
作者 马建博 王仲琦 杨恩 MA Jianbo;WANG Zhongqi;YANG En(State Key Laboratory of Explosion Science and Technology,Beijing Institute of Technology,Beijing 100081,China)
出处 《中国安全生产科学技术》 CAS CSCD 北大核心 2023年第7期51-56,共6页 Journal of Safety Science and Technology
基金 国家自然科学基金项目(51678050)。
关键词 台阶爆破 KUZ-RAM模型 面积测量法 平均块度 岩石系数 bench blasting KUZ-RAM model area measurement method average block size lithology factor
  • 相关文献

参考文献5

二级参考文献20

  • 1郭连军,王智静,牛成俊,任保山,赵维清,朱勇,许丹华.爆破优化的神经网络模型[J].工程爆破,1996,2(2):11-15. 被引量:20
  • 2Cai Huaiping Liu Jingxu Chen Yingwu Wang Hao.Survey of the research on dynamic weapon-target assignment problem[J].Journal of Systems Engineering and Electronics,2006,17(3):559-565. 被引量:48
  • 3周继成.人工神经网络--第三代计算机的实现[M].北京:科学普及出版社,1995.8-14. 被引量:2
  • 4祝文化.堆石坝料开采爆破块度预测及参数优化的神经网络方法研究:硕士论文[M].武汉:武汉工业大学,2000.. 被引量:1
  • 5龙涛,陈岩,霍霄华,沈林成.战场环境中多无人机动态任务调度[J].计算机工程,2007,33(19):36-38. 被引量:4
  • 6Li Changhe, Yang Shengxiang. An adaptive learning particle swarm optimizer for function optimization[ A]. Evolutionary Computation, 2009. CEC' 09 [ C ]. Trondheim, Norway : IEEE ,2009:381-388. 被引量:1
  • 7Jevtic A, Guti6rrez A,Andina D, et al. Distributed bees algorithm for task allocation in swarm of robots [ J ].Systems Journal, IEEE ,2012 ,6 ( 2 ) :296-304. 被引量:1
  • 8Wu Z, Xiao M, Jin B, et al. Dynamic task allocation based on distance of superior probability auction [ J ]. Journal of Convergence Information Technology, 2012, 7(2) :10-17. 被引量:1
  • 9Zavlanos M M, Spesivtsev L, Pappas G J. The distributed auction algorithm for the assignment problem[ A]. The 47th IEEE Conference on Decision and Control, 2008 [ C ]. Cancun, Mexico : IEEE, 2008 : 1212-1217. 被引量:1
  • 10Luo L, Chakraborty N, Sycara K. Multi-robot assignment algorithm for tasks with set precedence constraints [ A ]. The 2011 IEEE International Conference on Robotics and Automation(ICRA) [ C ]. Karlsruhe, Germany : IEEE ,2011:2526-2533. 被引量:1

共引文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部