摘要
The endosomal sorting complex required for transport(ESCRT)is highly conserved in eukaryotic cells and plays an essential role in the biogenesis of multivesicular bodies and cargo degradation to the plant vacuole or lysosomes.Although ESCRT components affect a variety of plant growth and development processes,their impact on leaf development is rarely reported.Here,we found that OsSNF7.2,an ESCRT-Ⅲ component,controls leaf rolling in rice(Oryza sativa).The Ossnf7.2 mutant rolled leaf 17(rl17)has adaxially rolled leaves due to the decreased number and size of the bulliform cells.OsSNF7.2is expressed ubiquitously in all tissues,and its protein is localized in the endosomal compartments.OsSNF7.2 homologs,including OsSNF7,OsSNF7.3,and OsSNF7.4,can physically interact with OsSNF7.2,but their single mutation did not result in leaf rolling.Other ESCRT complex subunits,namely OsVPS20,OsVPS24,and OsBRO1,also interact with OsSNF7.2.Further assays revealed that OsSNF7.2 interacts with OsYUC8 and aids its vacuolar degradation.Both Osyuc8and rl17 Osyuc8 showed rolled leaves,indicating that OsYUC8 and OsSNF7.2 function in the same pathway,conferring leaf development.This study reveals a new biological function for the ESCRT-Ⅲcomponents,and provides new insights into the molecular mechanisms underlying leaf rolling.
基金
supported by the Key Laboratory of Biology,Genetics and Breeding of Japonica Rice in the Mid-Lower Yangtze River
the Ministry of Agriculture,P.R.China
the Southern Japonica Rice Research and Development Co.,Ltd(Nanjing,Jiangsu,China)
provided by the Jiangsu Science and Technology Development Program(BE2021360)
the Natural Science Foundation of Jiangsu Province,Major Project(BK20212010)
the Agricultural Science and Technology Innovation Program of CAAS(CAAS-ZDXT20201,CAAS-ZDXT201903)。