摘要
响应教育部关于一流本科课程持续建设的高阶性要求,以奈氏曲线穿过(-1,j0)点时的稳定判据为例,对“自动控制原理”高阶性建设开展了探索。结合幅角原理得到了穿过(-1,j0)点时稳定性判断方法及不稳定时右半平面闭环极点个数的判断方法。示例展示了原点处或虚轴上闭环极点为单重根和多重根的情形,验证了所提判断方法的正确性。最后对课程的高阶性建设思路做了总结。
In order to respond to the high-order requirements of the Ministry of Education on the continuous construction of first-class undergraduate courses,this paper carries out some explorations on the high-order construction of course Principle of Automatic Control through the Nyquist stability criterion when passing through point(-1,j0).Using the argument principle,a theoretical analysis of Nyquist curve passing through(-1,j0)is carried out,and both the stability judgment method and the judgment method of the number of closed-loop poles on the right half plane when unstable are obtained.Examples show the cases when the closed-loop poles at the origin or on the virtual axis are single root or double roots,and verify the correctness of the proposed method.Finally,this paper summarizes the high-order construction of the course.
作者
王燕舞
刘骁康
张悦
肖江文
WANG Yanwu;LIU Xiaokang;ZHANG Yue;XIAO Jiangwen(School of Artificial Intelligence and Automation,Huazhong University of Science and Technology,Wuhan 430074,China)
出处
《电气电子教学学报》
2023年第3期49-55,共7页
Journal of Electrical and Electronic Education
基金
湖北高校省级教学改革研究项目(2020091)
华中科技大学教研项目(2020020)。
关键词
自动控制原理
奈氏稳定判据
幅角原理
principle of automatic control
Nyquist stability criterion
argument principle