期刊文献+

基于磁性液体一阶浮力原理的自动浮选分离结构设计

Design of Automatic Flotation Separation Structure Based on First-Order Buoyancy of Magnetic Liquids
下载PDF
导出
摘要 为了研究在选矿分离过程中实现对非导磁物质进行精密分选的问题,基于磁性液体一阶浮力原理,探讨永磁体作为磁源时,通过改变永磁体与磁性液体的距离从而改变浸没在磁性液体中的非磁性物体的受力情况;设计了自动浮选分离结构模型,其中用于磁源升降的电动剪叉式升降平台的升降行程为100 mm,通过磁源升降给磁性液体提供不同的磁场强度;设计了用于分离非磁性物料的直角坐标机器人和末端执行器,实现对悬浮在不同高度的非磁性物体的打捞分离;利用ANSYS Maxwell软件对设计的模型进行二维和三维仿真,近似计算出非磁性物体所受到的一阶浮力,为升降平台的承重能力设计提供了依据.仿真计算结果表明:指定非导磁圆柱体在磁性液体中悬浮的高度为距离容器底部60~70 mm处,为浮选分离装置设计提供了理论依据;使用高30 mm、半径80 mm的圆柱形永磁体提供磁场,将非导磁体所受一阶浮力换算为密度,得出了本设计可浮选的非导磁体的密度范围为1.65×10^(3)~6.66×10^(3) kg/m^(3). To determine the mineral separation process for the non-magnetic material precision sorting problem based on the first-order buoyancy of a magnetic fluid,this study examines the stress of non-magnetic objects immersed in a magnetic fluid by changing the distance between the permanent magnet and the magnetic fluid when the permanent magnet is used as a magnetic source.A structural model of automatic flotation separation is then designed.In the design plan,the lifting stroke of the electric scissor lift platform used for the lifting of the magnetic source was 100 mm;different magnetic field strengths can be provided to the magnetic liquid by lifting the magnetic source.Accordingly,a Cartesian robot and an end effector are designed to separate the nonmagnetic materials to salvage and separate non-magnetic objects suspended at different heights.Then,the ANSYS Maxwell software is used to conduct two-dimensional and three-dimensional simulations of the design situation.The approximately calculated first-order buoyancy of the non-magnetic objects provides a certain basis for the design of the lifting platform’s load-bearing capacity.The results show that the suspension height of the specified non-magnetic cylinder in the magnetic liquid is 60–70 mm from the bottom of the container according to the simulation data calculation,which provides a theoretical basis for the design of a flotation separation device.A cylindrical permanent magnet with a height of 30 mm and a radius of 80 mm is used to provide the magnetic field.Converting the first-order buoyancy of the non-permeable magnet into density,the density range of the non-permeable magnet that can be floated using this design is approximately 1.65×10^(3)‒6.66×10^(3) kg/m^(3).
作者 崔红超 韩世达 李辰 张佳佳 李德才 CUI Hongchao;HAN Shida;LI Chen;ZHANG Jiajia;LI Decai(School of Mechanical,Electronic and Control Engineering,Beijing Jiaotong University,Beijing 100044,China;School of Mechanical Science and Engineering,Huazhong University of Science and Technology,Wuhan 430074,China;State Key Laboratory of Tribology,Tsinghua University,Beijing 100084,China)
出处 《西南交通大学学报》 EI CSCD 北大核心 2023年第4期947-956,共10页 Journal of Southwest Jiaotong University
基金 中央高校基本科研业务费(2022JBMC032) 北京市自然科学基金(2222072) 载运工具先进制造与测控技术教育部重点实验室(北京交通大学)开放课题(M21GY1300050)。
关键词 磁性液体 一阶浮力 磁选分离 结构设计 magnetic liquid first order buoyancy magnetic separation structural design
  • 相关文献

参考文献9

二级参考文献31

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部