期刊文献+

基于卷积神经网络的全景分割Transformer模型 被引量:7

CNN Based Transformer for Panoptic Segmentation
下载PDF
导出
摘要 提出一种基于卷积神经网络的Transformer模型来解决全景分割任务,方法借鉴CNN在图像特征学习方面的先天优势,避免了Transformer被移植到视觉任务中所导致的计算量增加.基于卷积神经网络的Transformer模型由执行特征域变换的映射器和负责特征提取的提取器这两种基本结构构成,映射器和提取器的有效结合构成了该模型的网络框架.映射器由一种Lattice卷积模型实现,通过对卷积滤波器进行设计和优化来模拟图像的空间关系.提取器由链式网络实现,通过链式单元堆叠提高特征提取能力.基于全景分割的结构和功能,构建了基于CNN的全景分割Transformer网络.在MS COCO和Cityscapes数据集的实验结果表明,所提方法具有优异的性能. This study proposes a convolutional neural network(CNN)based Transformer to solve the panoptic segmentation task.The method draws on the inherent advantages of the CNN in image feature learning and avoids increase in the amount of calculation when the Transformer is transplanted into the vision task.The CNN-based Transformer is attributed to the two basic structures of the projector performing the feature domain transformation and the extractor responsible for the feature extraction.The effective combination of the projector and the extractor forms the framework of the CNN-based Transformer.Specifically,the projector is implemented by a lattice convolution that models the spatial relationship of the image by designing and optimizing the convolution filter configuration.The extractor is performed by a chain network that improves feature extraction capabilities by chain block stacking.Considering the framework and the substantial function of panoptic segmentation,the CNN-based Transformer is successfully applied to solve the panoptic segmentation task.The experimental results on the MS COCO and Cityscapes datasets demonstrate that the proposed method has excellent performance.
作者 毛琳 任凤至 杨大伟 张汝波 MAO Lin;REN Feng-Zhi;YANG Da-Wei;ZHANG Ru-Bo(School of Electromechanical Engineering,Dalian Minzu University,Dalian 116600,China)
出处 《软件学报》 EI CSCD 北大核心 2023年第7期3408-3421,共14页 Journal of Software
基金 国家自然科学基金(61673084) 辽宁省自然科学基金(20170540192,20180550866)。
关键词 全景分割 卷积神经网络 TRANSFORMER 语义分割 实例分割 panoptic segmentation convolutional neural network(CNN) Transformer semantic segmentation instance segmentation
  • 相关文献

同被引文献52

引证文献7

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部