摘要
针对疾病数据收集单位不连续的情况,运用Euler离散法建立了一类由媒体报道诱导的离散SIR传染病切换模型。从理论上研究了切换系统子系统地方病平衡点的存在性、稳定性等动力学行为。从数值上研究了切换系统的平衡点分支、单参数分支、初值敏感性。研究发现:关键参数的小扰动直接影响着疾病的暴发次数与频率,同时媒体报道可以降低疾病传染率,有效遏制疾病的流行与暴发。
In view of the discontinuity of disease data collection units,Euler discrete method is used to establish a kind of discrete SIR infectious disease switching model induced by media reports.The existence and stability of the endemic equilibria of two subsystems are studied theoretically.By numerical simulation,the equilibria bifurcation,sensitivity analysis of the key parameter and initial value are investigated.The results show that the minor perturbation of some parameters can influence the frequency and times of the outbreak of the infectious disease.Meanwhile,the disease transmission rate can be reduced through media reports,and the outbreak of the disease can be prevented effectively.
作者
覃文杰
张嘉敏
向中义
QIN Wenjie;ZHANG Jiamin;XIANG Zhongyi(College of Science,China Three Gorges University,Yichang 443002,China;School of Mathematics and Computer Science,Yunnan Minzu University,Kunming 650504,China;School of Mathematics and Statistics,Hubei Minzu University,Enshi 445000,China)
出处
《信阳师范学院学报(自然科学版)》
CAS
北大核心
2023年第3期396-402,共7页
Journal of Xinyang Normal University(Natural Science Edition)
基金
国家自然科学基金项目(12261104,12026233,12026221)
云南省“兴滇英才支持计划”青年人才项目(XDYC-QNRC-2022-0708)。
关键词
媒体报道
阈值策略
离散模型
切换系统
分支分析
media coverage
threshold strategy
discrete model
switched systems
bifurcation analysis