摘要
对TC21钛合金板材进行不同工艺的热轧制及热处理试验,阐明了不同工艺条件下微观组织的演变规律,明确了板材强塑性、冲击功以及断裂行为与不同显微组织之间的对应关系。研究表明,随着轧制温度从930℃升高至1060℃,板材显微组织依次由板条组织变为等轴组织再变为双态组织,该过程中板材强度降低,塑性变化不大,冲击韧性无明显的规律性,960℃和1060℃轧制时板材冲击韧性较高;通过热处理同样可以有效调控显微组织,随着固溶温度从900℃升高至960℃,再经相同工艺时效处理后,原始的α相向β相转变,并在固溶温度为960℃时析出细小的α板条,该过程中强度先升高后降低,塑性和冲击韧性则先降低后升高。960℃轧制得到的TC21钛合金板材经过960℃×2 h/AC+590℃×4 h/AC热处理后,可获得较好的强韧匹配。
Through the hot-rolling and heat treatment experiments of TC21 titanium alloy plate under different process conditions,the microstructure evolution rules were studied.Meanwhile,the corresponding relationships between the strength plasticity,impact energy,and fracture behavior of the plate and the different microstructures were clarified.The results show that with the increase of rolling temperature from 930℃to 1060℃,the microstructure of plate changes from lath structure to equiaxed structure and then to duplex structure.During this process,the strength of plate decreases,while the plasticity changes little,and the impact toughness has no obvious regularity.But the impact toughness of the plate is higher when rolled at 960℃and 1060℃.Heat treatment can also effectively regulate the microstructure.As the solution temperature increases from 900℃to 960℃,the originalαphase transformed intoβphase after aging at the same temperature,especially at 960℃,the fineαlath is precipitated.In this process,the strength first increases and then decreases,and the plasticity and impact toughness first decreases and then increases.Finally,the TC21 titanium alloy plate rolled at 960℃and after heat treatment with 960℃×2 h/AC+590℃×4 h/AC presents good strength and toughness matching.
作者
秦海旭
耿乃涛
杨柳
郑友平
王立亚
Qin Haixu;Geng Naitao;Yang Liu;Zheng Youping;Wang Liya(Chengdu Advanced Metal Materials Industrial Technology Research Institute Co.,Ltd.,Chengdu 610300,China;State Key Laboratory of Vanadium and Titanium Resources Comprehensive Utilization,Panzhihua 617000,China)
出处
《钛工业进展》
CAS
2023年第3期6-13,共8页
Titanium Industry Progress
关键词
TC21钛合金
热轧
固溶时效
显微组织
力学性能
TC21 titanium alloy
hot-rolling
solution and aging
microstructure
mechanical properties