期刊文献+

基于高频重构信号与Bayes-XGBoost的低压电弧故障辨识方法研究 被引量:2

Low voltage arc fault identification method based on high frequency reconstructed signal and Bayes-XGBoost
下载PDF
导出
摘要 针对低压配电系统中单个用电负载支路串联电弧故障辨识困难的问题,提出一种基于高频重构信号和Bayes-XGBoost的低压电弧辨识方法。首先,搭建多支路、多负载类型的低压电弧故障真型实验平台,并采集相关数据。其次,基于故障前后主线路电流高频信号变化规律,提出信号微弱变化叠加法重构故障有效信号。最后,建立适用于单个负载支路电弧故障辨识的XGBoost模型,并采用Bayes算法对模型多个超参数进行优化。实验结果表明,所提方法在多种工况下对单个负载支路电弧故障具有较高的辨识准确率。与6种主流故障分析方法对比,所提方法在精度、训练速度和泛化能力等方面展现出了显著的优越性,有利于实现低压配电系统单个负载支路电弧故障的可靠辨识。 There is a problem of difficult identification of series arcing faults in single power-using load branches in low-voltage distribution systems.Thus a low-voltage arc identification method based on high-frequency reconstructed signals and Bayes-XGBoost is proposed.First,a multi-branch,multi-load type LV arc fault true type experimental platform is built and relevant data is collected.Second,based on the main line current high frequency signal change law before and after a fault,the signal weak change superposition method is proposed to reconstruct the effective signal of the fault.Finally,an XGBoost model for single load branch arc fault identification is established,and the Bayes algorithm is used to optimize several hyperparameters of the model.The experimental results show that the proposed method has a high accuracy in identifying arc faults in a single load branch in a variety of operating scenarios.In comparison with the six mainstream fault analysis methods,the proposed method shows significant advantages in terms of accuracy,training speed and generalizability.The proposed method is useful for the reliable identification of arcing faults in single load branches of LV distribution systems.
作者 罗晨 喻锟 曾祥君 仝海昕 慕静茹 谢志成 邓军 LUO Chen;YU Kun;ZENG Xiangjun;TONG Haixin;MU Jingru;XIE Zhicheng;DENG Jun(National Key Laboratory of Disaster Prevention and Reduction for Power Grid(Changsha University of Science and Technology),Changsha 410114,China;Extra-High Voltage Transmission Company of CSG,Guangzhou 510663,China)
出处 《电力系统保护与控制》 EI CSCD 北大核心 2023年第13期91-101,共11页 Power System Protection and Control
基金 国家自然科学基金项目资助(52037001,52207125) 湖南省自然科学基金项目资助(2022JJ50187) 湖南省教育厅项目资助(22A0231) 湖南省研究生科研创新项目资助(CX20220858)。
关键词 低压系统 XGBoost 支路电弧故障 特征提取 信号重构 low voltage systems XGBoost branch circuit arc faults feature extraction signal reconstruction
  • 相关文献

参考文献18

二级参考文献210

共引文献371

同被引文献24

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部