期刊文献+

爆轰波模拟中一个保正的有限体积WENO格式

A Positive Preserving Finite Volume WENO Scheme in Detonation Wave Simulation
下载PDF
导出
摘要 对一维爆轰波的数值模拟设计了一种保正的有限体积WENO格式.以一维反应欧拉方程组作为描述爆轰波的控制方程,对方程组在空间离散上采用三阶WENO重构的有限体积法,时间离散上采用Strang分裂法和二阶龙格库塔法.从爆轰波的数值模拟中可以观察到,在压力快速变化的区域使用一般的WENO重构方法会使得压力出现负值.提出了一种简单且有效的策略,使得重构的压力具有保正性.通过数值算例验证了所提出的数值格式的稳定性和收敛性,以及对爆轰波结构变化捕捉的良好能力. In this paper,a positive preserving finite volume WENO scheme is designed for the numerical simulation of one-dimensional detonation waves.The one-dimensional reaction Euler equations are used as the control equations for describing detonation waves.The equations are discretized using the third-order WENO reconstruction finite volume method in space,and the Strang splitting method and second-order Runge Kutta method in time.From the numerical simulation of detonation waves,it can be observed that using the general WENO reconstruction method in areas with rapid pressure changes can result in negative pressure values.A simple and effective strategy is proposed to ensure that the reconstructed pressure maintains positivity.The stability and convergence of the proposed numerical scheme were verified through numerical examples,as well as its good ability to capture changes in detonation wave structure.
作者 邓辰峰 DENG Chen-feng(School of Mathematics,Nanjing University of Aeronautics and Astronautics,Key Laboratory of Mathematical Modelling and High Performance Computing of Air Vehicles(NUAA),Ministry of Industry and Information Technology(MIIT),Nanjing 211106,China)
出处 《西安文理学院学报(自然科学版)》 2023年第3期22-29,39,共9页 Journal of Xi’an University(Natural Science Edition)
关键词 爆轰波 保正性 Strang分裂法 WENO重构 detonation wave positivity preserving strang splitting method weighted essentially non-oscillatory(WENO)reconstruction
  • 相关文献

参考文献3

二级参考文献33

  • 1王治武,严传俊,李牧,范玮,郑龙席,邱华.燃油粒度对两相PDE爆震波速的影响[J].工程热物理学报,2006,27(6):1057-1059. 被引量:5
  • 2M. Latini, O. Schilling and W.S. Don, Effects of order of WENO flux reconstruction and spatial resolution on reshocked two-dimensional Richtmyer-Meshkov instability, J. Comput. Phys., 221 (2007), 805-836. 被引量:1
  • 3Y.B. Zeldovich, On the theory of the propagation of detonation in gaseous system, Zh. Eksp. Teor. Fiz., 10 (1940), 542-568. 被引量:1
  • 4J. von Neumann, Theory of Detonation Waves, John von Neumann, Collected Works, Macmillan, New York, 6 (1942). 被引量:1
  • 5W. Doering, On detonation processes in gases, Ann. Phys., 43 (1943), 421-436. 被引量:1
  • 6A. Bourlioux, A.J. Majda and V. Roytburd, Theoretical and numerical structure for unstable one-dimensional detonations, SIAM J. Appl. Math., 51 (1991), 303-343. 被引量:1
  • 7J.J. Quirk, Godunov-type schemes applied to detonation flows, ICASE Report, 93 15 (1993). 被引量:1
  • 8M.V. Papalexandris, A. Leonard and P.E. Dimotakis, Unsplit schemes for hyperbolic conservation laws with source terms in one space detonation, J. Comput. Phy., 134 (1997), 31-61. 被引量:1
  • 9A.K. Henrick, T.D. Aslam and J.M. Powers, Simulations of pulsating one-dimensional detonations with true fifth order accuracy, J. Comput. Phys., 213 (2006), 311-329. 被引量:1
  • 10G.S. Jiang and C.W. Shu, Efficient Implementation of Weighted ENO Schemes, J. Comput. Phys., 126 (1996), 202-228. 被引量:1

共引文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部