摘要
量子信息学在信息获取、传输和处理等方面具有独特优势,在保障新型电力系统信息安全和纾解算力困境等方面潜力巨大。从量子通信和量子计算2个方面,总结了电力系统应用背景下的量子信息学研究现状,并对未来可能的研究方向进行了展望。首先,介绍了量子信息学的基本概念和原理。然后,针对量子通信,分析了典型量子通信技术在新型电力系统中的适用性,并从远距离信息传输、多主体通信、统一标准化和专用研发平台4个方面了梳理电力系统中量子通信的研究现状;针对量子计算,从线性代数运算、优化问题求解、机器学习和参数估计等方面阐述归纳了量子算法的基本原理及其在电力系统中的研究现状。最后,面向新型电力系统中量子信息学的应用前景进行了展望,并提出了电力系统中量子信息学的发展建议。
The quantum informatics has unique advantages in information acquisition,transmission and processing,etc.,and has great potential in ensuring information security of new power systems and alleviating computational difficulties.In this paper,the research status of quantum informatics in the context of power system applications is summarized from two aspects of quantum communication and quantum computing,and the possible research directions in the future are prospected.First,the basic concepts and principles of quantum informatics are introduced.Then,for quantum communication,the applicability of representative quantum communication technologies in new power systems is analyzed.The research status of quantum communication in power systems is generalized in four aspects:long-distance information transmission,multi-user communication,unified standards and dedicated research platforms.For quantum computing,the basic principles of quantum computing methods and their research status in power systems are summarized from the aspects of linear algebraic operations,optimization problem solving,machine learning and parameter estimation.Finally,the application of quantum informatics in new power systems is prospected,and the development suggestions of quantum informatics in power systems are put forward.
作者
谢海鹏
钱雨琦
付炜
王信
别朝红
XIE Haipeng;QIAN Yuqi;FU Wei;WANG Xin;BIE Zhaohong(State Key Laboratory of Electrical Insulation and Power Equipment(Xi’an Jiaotong University),Xi’an 710049,Shaanxi Province,China)
出处
《中国电机工程学报》
EI
CSCD
北大核心
2023年第12期4485-4507,共23页
Proceedings of the CSEE
基金
国家重点研发计划项目(2021YFB2401300)。
关键词
量子信息学
新型电力系统
量子通信
量子计算
量子衍生算法
quantum informatics
new power system
quantum communication
quantum computing
quantum derivative algorithm