摘要
建立了一个具有饱和发生率的急慢性乙肝传染病模型.首先,验证了该模型的耗散性;其次,计算得到该模型的基本再生数R0,并且证明了模型始终存在唯一无病平衡点,且当R_(0)>1时,模型存在唯一的正平衡点;最后,利用Routh-Hurwitz准则和Lyapunov函数,证明了无病平衡点E_(0)和正平衡点E*的局部稳定性和全局稳定性.
In this paper,a model of acute and chronic HBV with saturated incidence is established.First,the dissipativity of the model is verified.Secondly,the basic reproduction number R 0 of the model is calculated.It is obtained that the model always exists a disease-free equilibrium point,and there exists a unique positive equilibrium point when R_(0)>1.Finally,by using the Routh-Hurwitz criterion and Lyapunov functions,the local and global stabilities of the disease-free equilibrium point E_(0)and the positive equilibrium point E*are proved.
作者
王耀哲
刘贤宁
WANG Yaozhe;Liu Xianning(School of Mathematics and Statistics,Southwest University,Chongqing 400715,China)
出处
《西南师范大学学报(自然科学版)》
CAS
2023年第7期46-52,共7页
Journal of Southwest China Normal University(Natural Science Edition)
基金
国家自然科学基金项目(11671327).