期刊文献+

NaNbO_(3)–CaZrO_(3)–Bi_(0.5)Na_(0.5)TiO_(3)三元系陶瓷的相结构与储能性能 被引量:6

Structure and Energy Storage Characteristics of NaNbO_(3)-CaZrO_(3)-Bi_(0.5)Na_(0.5)TiO_(3) Ternary System Ceramics
原文传递
导出
摘要 铌酸钠(NaNbO_(3))无铅陶瓷由于其无毒和出色的储能性能,在脉冲功率电容器领域吸引了越来越多的关注。然而,由于较大的有效储能密度(Wrec)和高的储能效率(η)不能同时实现,限制了其商业化。通过构建局域随机场,增加弛豫特性来提高储能性能的策略。采用传统固相法制备了(1–x)(0.96Na Nb O_(3)–0.04CaZrO_(3))–x Bi_(0.5)Na_(0.5)TiO_(3)(x=0.05、0.10、0.15、0.20)反铁电储能陶瓷,研究了不同含量Bi_(0.5)Na_(0.5)TiO_(3)对0.96Na Nb O_(3)–0.04CaZrO_(3)陶瓷的相结构、微观形貌、介电性能和储能特性的影响。结果表明:随着Bi_(0.5)Na_(0.5)TiO_(3)含量的增加,(1–x)(0.96NaNbO_(3)–0.04CaZrO_(3))–x Bi_(0.5)Na_(0.5)TiO_(3)固溶体由反铁电正交P相(x≤0.10)转变为反铁电正交R相(x≥0.15),同时介电峰向低温方向移动并变矮宽化,呈现出明显的弛豫特性。其中,0.85(0.96Na Nb O_(3)–0.04CaZrO_(3))–0.15Bi_(0.5)Na_(0.5)TiO_(3)陶瓷在室温260 kV/cm的场强下展示出最好的储能性能(储能密度Wrec=1.614 J/cm3,储能效率η=83.97%),且当温度在25~150℃变化时,表现出良好的温度的稳定性(Wrec变化幅度<15%),同时兼具良好的储能效率,是一种非常有前途的高温脉冲功率电容器材料。 Sodium niobate(NaNbOs)-based lead-free ceramics have attracted much attention in the pulse power capacitors due to their non-toxicity and superior energy storage properties.However,the large recoverable energy-storage density(Wree)and efficiency(n)cannot be achieved simultaneously,thus restricting their commercialization.This work proposed astrategy of increasing the relaxation characteristics to improve the energy storage performance via constructing a local random field.The(1-x)(0.96Na Nb O_(3)-0.04CaZrO_(3))-x Bi_(0.5)Na_(0.5)TiO_(3)(x=0.05,0.10,0.15,and 0.20)antiferroelectric energy storage ceramics were prepared by a conventional solid-state method.The effect of Bi_(0.5)Na_(0.5)TiO_(3) content on the phase structure,microstructure and dielectric,ferroelectric as well as energy storage properties of 0.96NaNbO3-0.04CaZrO ceramics was investigated.The results show that the microstructure of each ceramic is homogeneous and dense.The(1-x)(0.96NaNbO3-0.04CaZrO3)-xBio.sNao.sTiO3 solid solution transformsfrom antiferroelectric orthorhombic P phase(x≤0.10)to antiferroelectric orthorhombic R phase(x≥0.15),accompanied by abroadening dielectric peak moving towards the lower temperatures as Bio.sNao.5TiO;content increases,thus having the representative relaxation characteristics.The 0.85(0.96Na Nb O_(3)-0.04CaZrO_(3))-0.15Bi_(0.5)Na_(0.5)TiO_(3)ceramic has a maximum energy storage density Wree of 1.614 J/cm and a high energy storage efficiency n of 83.97%under 260 kV/cm at rom temperature.Besides,the ceramic exhibits a good temperature stability at 25-150 C(the variation of Wree less than 15%)and a high energy storage efficiency,which can be used as a promising material for high-temperature pulsed power capacitors.
作者 王子瑄 李卓 张家勇 张静 牛艳辉 WANG Zixuan;LI Zhuo;ZHANG Jiayong;ZHANG Jing;NIU Yanhui(School of Materials Science and Engineering,Chang'an University,Xi'an 710064,China)
出处 《硅酸盐学报》 EI CAS CSCD 北大核心 2023年第6期1530-1540,共11页 Journal of The Chinese Ceramic Society
基金 国家自然科学基金(11604022,52278427) 陕西省自然科学基础研究计划(2021JM-172) 中央高校基本科研业务费专项基金(300102311404,300102310301) 大学生创新创业训练计划(S202210710249,X202210710580)。
关键词 铌酸钠 反铁电陶瓷 储能性能 温度稳定性 sodium niobate antiferroelectric ceramics energy storage performance temperature stability
  • 相关文献

参考文献3

二级参考文献38

  • 1Chen X F, Cao F, Zhang H L, Yu G, Wang G S, Dong X L, Gu Y, He H L and Liu Y S 2012 J. Am. Ceram. Soc. 95 1163. 被引量:1
  • 2Yao K, Chen S T, Rahimabady M, Mirshekarloo M S, Yu S H, Tay F E H, Sritharan T and Lu L 2011 IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 58 1968. 被引量:1
  • 3Liu Y Y, Lu X M, Jin Y M, Peng S, Huang F Z, Kan Y, Xu T T, Min K L and Zhu J S 2012 Appl. Phys. Lett. 100 212902. 被引量:1
  • 4Shirane G, Sawaguchi S and Takagi Y 1951 Phys. Rev. 84 476. 被引量:1
  • 5Jaffe B 1961 Proc. IRE 49 1264. 被引量:1
  • 6Xu B, Moses P, Pai N G and Cross L E 1998 Appl. Phys. Lett. 72 593. 被引量:1
  • 7Sternberg A, Kundzinsa K, Zaulsa V and Aulikaa I 2004 J. Eur. Ceram. Soc. 24 1653. 被引量:1
  • 8Parui J and Krupanidhi S B 2008 Appl. Phys. Lett. 92 192901. 被引量:1
  • 9Jiang S J, Zhang L, Zhang G Z, Liu S S, Yi J Q, Xiong X, Yu Y, He J G and Zeng Y K 2013 Ceram. Int. 39 5571. 被引量:1
  • 10Sa T L, Cao Z P, Wang YJ and Zhu H B 2014 Appl. Phys. Lett. 105 043902. 被引量:1

共引文献9

同被引文献24

引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部