摘要
Developing an efficient Zn-based catalyst modified with Trifluoromethanesulfonic acid(Tf OH)ligand is extremely desirable for the acetylene hydration reaction.In this paper,with the use of a simple impregnation method,a series of Zn-Tf OH/AC catalysts were synthesized,and the Zn-1.5Tf OH/AC catalyst demonstrated the optimal catalytic performance with 96%acetylene conversion in the hydration of acetylene.The X-ray absorption fine structure(XAFS)spectra of the fresh Zn-1.5Tf OH/AC catalysts demonstrated the establishment of the Zn-O_(4)coordination structure.According to the characterization results,Tf OH ligands effectively inhibited carbon accumulation and Zinc loss,improved acidic sites and the dispersion of active metal,and produced more catalytic active site.Furthermore,the hydration reaction mechanism of Zn-Tf OH/AC catalyst with Zn(OTf)_(2),Tf O-Zn Cl,and Tf O-Zn OH complex configurations was explored by the Density Functional Theory(DFT)method,which showed that the activation barrier increased sequentially TfO-ZnOH<Zn(OTf)_(2)<Tf O-Zn Cl.Importantly,the OH-in TfO-ZnOH is involved in the reaction and regenerated by the dissociation of H_(2)O,which lowers the energy barrier.This will provide a reference to design more efficient nonmercury catalysts for acetylene hydration.
基金
financial support provided by the High-level Talent Scientific Research Project of Shihezi University(Nos.RCZK201934 and SHYL-BQ201906)
the National Natural Science Funds of China(NSFC,No.22178225)。