期刊文献+

Design of Neural Network Based Wind Speed Prediction Model Using GWO 被引量:2

下载PDF
导出
摘要 The prediction of wind speed is imperative nowadays due to the increased and effective generation of wind power.Wind power is the clean,free and conservative renewable energy.It is necessary to predict the wind speed,to implement wind power generation.This paper proposes a new model,named WT-GWO-BPNN,by integrating Wavelet Transform(WT),Back Propagation Neural Network(BPNN)and GreyWolf Optimization(GWO).The wavelet transform is adopted to decompose the original time series data(wind speed)into approximation and detailed band.GWO-BPNN is applied to predict the wind speed.GWO is used to optimize the parameters of back propagation neural network and to improve the convergence state.This work uses wind power data of six months with 25,086 data points to test and verify the performance of the proposed model.The proposed work,WT-GWO-BPNN,predicts the wind speed using a three-step procedure and provides better results.Mean Absolute Error(MAE),Mean Squared Error(MSE),Mean absolute percentage error(MAPE)and Root mean squared error(RMSE)are calculated to validate the performance of the proposed model.Experimental results demonstrate that the proposed model has better performance when compared to other methods in the literature.
出处 《Computer Systems Science & Engineering》 SCIE EI 2022年第2期593-606,共14页 计算机系统科学与工程(英文)
  • 相关文献

同被引文献18

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部